Серых Александр Иванович

«Формирование, природа и физико-химические свойства катионных центров в каталитических системах на основе высококремнеземных цеолитов»

02.00.04

химические науки

Д 002.222.02

Федеральное государственное бюджетное учреждение науки Институт органической химии им. Н.Д. Зелинского Российской академии наук

119991, Москва, Ленинский проспект, 47

Тел., (499) 137-13-79

E-mail: sci-secr@ioc.ac.ru

Предполагаемая дата защиты диссертации: 11 ноября 2014 года

Диссертация размещена на сайте института http//www.aid.ioc.ac.ru 20 июня 2014 года

Дата приема к защите: 24 июня 2014 года

Автореферат размещен на сайте ВАК http//vak2.ed.gov.ru 6 августа 2014 года

Федеральное государственное бюджетное учреждение науки Институт органической химии им. Н.Д. Зелинского Российской академии наук

На правах рукописи

Серых Александр Иванович

ФОРМИРОВАНИЕ, ПРИРОДА И ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА КАТИОННЫХ ЦЕНТРОВ В КАТАЛИТИЧЕСКИХ СИСТЕМАХ НА ОСНОВЕ ВЫСОКОКРЕМНЕЗЕМНЫХ ЦЕОЛИТОВ

02.00.04 - физическая химия

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание учёной степени

доктора химических наук

Москва – 2014

Работа выполнена в Федеральном государственном бюджетном учреждении науки Институте органической химии им. Н.Д. Зелинского Российской академии наук (ИОХ РАН)

Официальные оппоненты: Матышак Валерий Андреевич

доктор химических наук, профессор Федеральное государственное бюджетное учреждение науки Институт химической физики им. Н.Н. Семенова Российской академии наук

Цыганенко Алексей Алексеевич

доктор физико-математических наук, профессор Санкт-Петербургский государственный университет, физический факультет

Чукин Геннадий Дмитриевич доктор химических наук, профессор ООО «Пластнефтехим»

Ведущая организация:

Московский государственный университет им. М. В. Ломоносова, химический факультет

Защита состоится <u>«11» ноября 2014 г</u>. в 11 часов 00 мин. на заседании диссертационного совета Д 002.222.02 при Федеральном государственном бюджетном учреждении науки Институте органической химии им. Н.Д. Зелинского Российской академии наук по адресу: 119991, Москва, Ленинский проспект, д. 47.

С диссертацией можно ознакомиться в библиотеке ИОХ РАН и на официальном сайте ИОХ РАН по адресу: http://www.aid.ioc.ac.ru. Автореферат размещен на официальном сайте Высшей аттестационной комиссии при Министерстве образования и науки Российской Федерации по адресу: http://vak2.ed.gov.ru/catalogue

Автореферат разослан «____» октября 2014 г.

Ученый секретарь диссертационного совета Д. 002. 222.02 кандидат химических наук

О. Л. Елисеев

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. В последние годы цеолиты и материалы на их основе находят все более широкое применение в разных отраслях промышленности, в сельском хозяйстве и строительстве. Наряду с традиционными областями применения цеолитов в качестве адсорбентов, ионообменных систем и катализаторов переработки нефти и газа, цеолиты находят новые применения в фармацевтической и косметической индустриях с целью выполнения каталитических синтезов ценных органических веществ. Цеолиты также представляют интерес в качестве матриц для введения различных катионов, красителей, кластеров полупроводников, металлов и других неорганических и органических композитов с целью получения материалов, обладающих новыми, часто уникальными химическими и физическими (оптическими, электронными) свойствами.

каталитического Для понимания действия природы цеолитных катализаторов, модифицированных катионами различных металлов И проявляющих активность в промышленно важных реакциях, особенно важно исследование природы и свойств катионных центров в цеолитах, а также взаимодействия различных молекул с этими центрами. Все это требует углубленного изучения структуры цеолитов, природы компенсирующих внекаркасных катионных центров, а также взаимодействия различных гостевых молекул, как с каркасом цеолита, так и с катионными центрами. Работы по исследованию структуры и окружения катионных центров в цеолитах, природы их адсорбционных и каталитических свойств, активно ведущиеся в последние десятилетия, позволили прийти к весьма глубокому пониманию механизмов каталитического действия цеолитов, обнаружению их новых необычных свойств. физико-химических Вместе С тем. к настоящему времени исчерпывающих сведений о природе каталитического действия многих катализаторов на основе цеолитов все еще не получено. В современной научной литературе существуют различные взгляды на природу катионных центров в цеолитах и их роль В каталитических реакциях. Широко дискутируется зарядовое состояние обменных катионов металлов. ИХ положение относительно атомов алюминия каркаса цеолита, а также роль Дальнейшие исследования с целью структур, не связанных с каркасом. выяснения природы каталитически активных и адсорбционных центров в модифицированных различными цеолитах, катионами металлов, представляются, таким образом, весьма актуальными с точки зрения развития теории и практики цеолитного катализа. Весьма информативным методом в исследовании взаимодействия молекул с поверхностью твердых тел, в

частности. гетерогенных катализаторов, является метод инфракрасной спектроскопии адсорбированных тестовых молекул, являющийся, пожалуй, наиболее традиционным в таких исследованиях. Несмотря на широкое распространение, возможности этого метода далеко не исчерпаны. Это, прежде всего, касается исследования объектов в геометрии диффузного отражения, позволяющей получать высококонтрастные ИК спектры дисперсных систем, как в средней ИК-области, так и в ближней. Последнее обстоятельство имеет большое значение при использовании в качестве молекулярного зонда водорода, колебания Н-Н связи которого лежат в ближней ИК-области (~4000 см⁻¹). Высокая контрастность спектров диффузного отражения также позволяет наблюдать малоинтенсивные линии в ИК спектрах. Это особенно важно в том случае, когда малая интенсивность линий обусловлена не низкой концентрацией исследуемых структур, а их свойствами (симметрией и симметрией соответствующих колебаний). Использование ИК-спектроскопии диффузного отражения в данной работе наряду с другими традиционными ЭПР экспериментальными методами (РФЭС. спектроскопии. УФ-Вид спектроскопии), а также методами квантово-химического моделирования, позволило получить ряд новых сведений о природе катионных центров в цеолитах, их адсорбционных свойствах и механизме их каталитического действия, особенностях свойств обменных катионов в высококремнеземных цеолитах как в состояниях с высшей степенью окисления, так и в нетипичных низковалентных состояниях.

<u>Цель работы.</u> В работе были поставлены следующие цели:

Выявление природы различных катионных структур в цеолитах, содержащих обменные катионы многовалентных металлов: цинка, кадмия, меди, никеля и галлия и проявляющих каталитическую активность в различных реакциях превращения углеводородов; исследование механизмов формирования этих катионных структур и их физико-химических свойств, включая взаимодействие с разными пробными молекулами.

Научная новизна. Впервые установлено, что формирование катионных центров в процессе высокотемпературной дегидратации катионных форм цеолитов, модифицированных катионами двухвалентных металлов путем водного ионного обмена, может происходить через образование наноразмерных частиц оксидов металлов из гидратированных форм обменных катионов и их последующее взаимодействие с кислотными гидроксильными группами цеолитов.

Впервые обнаружены два типа обменных катионных центров Zn²⁺ в Zn-ZSM-5, которые отличаются их удаленностью от атомов алюминия в каркасе цеолита. Катионы первого типа компенсируют отрицательные заряды

близкорасположенных алюминий-кислородных тетраэдров каркаса ZSM-5. Катионы второго типа компенсируют отрицательные заряды удаленных алюминий-кислородных тетраэдров. Установлено, что обменные катионы Zn²⁺, компенсирующие заряды удаленных друг от друга алюминий-кислородных тетраэдров, диссоциативно адсорбируют водород при комнатной и повышенных температурах с образованием катионов гидрида цинка и кислотных гидроксильных групп.

Установлено, что катионы цинка Zn^{2+} , компенсирующие заряды алюминий-кислородных тетраэдров, удаленных друг от друга в каркасе цеолита Zn-ZSM-5, диссоциативно адсорбируют метан с образованием катионов метила цинка и кислотных гидроксильных групп. На основании этого сделан вывод о том, что активными центрами дегидрирования парафинов в Zn-ZSM-5 являются катионы Zn^{2+} , компенсирующие отрицательные заряды удаленных друг от друга алюминий-кислородных тетраэдров каркаса цеолита.

Впервые исследована природа катионных центров в кадмийсодержащем цеолите ZSM-5. Установлено, что в зависимости от способа введения Cd, в Cd-ZSM-5 могут присутствовать разные обменные катионные структуры, такие как Cd^+ (в составе дикатиона $Cd_2^{2^+}$), оксокатионы $[Cd_2O_x]^{2^+}$ и изолированные Cd^{2+} . катионы что Показано. низковалентные катионы Cd^+ диспропорционируют при высоких температурах с образованием катионов Cd^{2+} и нульвалентного кадмия Cd^{0} . Взаимодействие дикатионов Cd_{2}^{2+} с повышенных температурах приводит к образованию кислородом при кислородом $[Cd_2O_x]^{2+}$. Впервые оксокатионов кадмия С мостиковым обнаружено, что изолированные катионы кадмия Cd²⁺, наиболее сильно молекулярный адсорбированный при возмущающие водород, низких температурах, способны диссоциативно адсорбировать молекулярный водород уже при комнатной температуре с образованием катионов гидрида кадмия и кислотных гидроксильных групп.

Впервые установлено, что при взаимодействии молекулярного азота с катионами Cu^+ в цеолите Cu-ZSM-5 образуются двухцентровые адсорбционные комплексы обменных катионов Cu^+ с молекулами азота, содержащие как мостиковые молекулы азота, адсорбированные в двухцентровой форме на двух катионах Cu^+ , так и терминальные, координированные одним катионом Cu^+ . При этом наиболее сильно возмущенными являются колебания мостиковых молекул азота.

Впервые обнаружена сильная адсорбция молекулярного водорода на катионах Cu⁺ в Cu-ZSM-5 при комнатной температуре. Установлено, что частота колебаний молекулярного водорода, адсорбированного на катионах Cu⁺, ниже частоты колебаний молекул свободного водорода более чем на

1000 см⁻¹. Показано, что молекулярный водород является чувствительным тестом для обнаружения катионов меди в состояниях, как с различной степенью окисления, так и в различной координации.

Исследована термостабильность обменных катионов Ni⁺ в Ni-ZSM-5. Показано, что при высоких температурах происходит разрушение катионов Ni⁺ вследствие их диспропорционирования на Ni²⁺ и Ni⁰. Проведено ИК-спектроскопическое исследование адсорбции молекулярного водорода и азота на катионах Ni⁺ в Ni-ZSM-5. Впервые обнаружено образование комплексов молекулярного азота и водорода с низковалентными катионами Ni⁺, в которых частоты валентных колебаний молекул азота и водорода сильно понижены по сравнению с частотами колебаний свободных молекул.

Установлена природа различных форм галлия в галлийсодержащих Впервые обнаружено, ЧТО В восстановленных цеолитах. Ga-ZSM-5 низковалентные обменные катионы галлия Ga⁺ могут диспропорционировать с образованием металлического галлия и обменных катионов Ga³⁺. Показано, что Ga³⁺ и металлический галлий в восстановленном Ga-ZSM-5 катионы нестабильны И могут стабильно существовать только В условиях сверхвысокого вакуума. Впервые показано, что в восстановленных галлийсодержащих цеолитах с более низким отношением Si/Al, а также на поверхности кислотных оксидных носителей, в отличие от Ga-ZSM-5, образуются стабильные катионы Ga³⁺. Эти катионы способны диссоциативно адсорбировать водород с образованием стабильных поверхностных гидридов галлия и гидроксильных групп. На основании полученных результатов и литературных данных сделан вывод о том, что каталитически активными центрами в реакции дегидрирования алканов являются изолированные обменные катионы Ga³⁺.

Исследованы оптические свойства Ga-ZSM-5. Впервые обнаружена интенсивная фотолюминесценция в ультрафиолетовой области (360 нм) восстановленного Ga-ZSM-5. Установлено, что центрами этой люминесценции являются низковалентные обменные катионы Ga⁺.

Практическая значимость работы. Полученные сведения о природе и свойствах катионных центров в высококремнеземных цеолитах могут быть использованы для повышения эффективности существующих катализаторов и адсорбентов на основе цеолитов, а также для разработки новых систем. Большинство выводов и положений настоящей работы вносит существенный вклад в современные представления о природе каталитического действия катионных форм цеолитов активных в промышленно важных каталитических реакциях и о природе взаимодействия различных молекул с катионными центрами в этих цеолитах.

Аппробация работы. Основные результаты работы доложены на следующих научных мероприятиях: 13-м Международном конгрессе по катализу (11-16 июня, 2004 г., Париж, Франция); 20-й конференции Североамериканского каталитического общества (17-22 июня 2007 г, Хьюстон, США); Ежегодном съезде Американского Института химических технологий (AIChE) (4-9 ноября 2008 г., Солт Лэйк Сити, США); 21-й конференции Североамериканского каталитического общества (7-12 июня 2009 г., Сан-Франциско, США); 10-м Европейском конгрессе по катализу EuropaCat X (28 августа-2 сентября 2011 г., Глазго, Шотландия); Московском межинститутском семинаре по катализу (рук. проф. В.Н. Корчак, Россия, Москва, ИХФ им. Н.Н. Семенова РАН, 11.06.2013).

Публикации. По материалам диссертации опубликовано 17 статей в рецензируемых научных журналах, рекомендуемых ВАК Министерства образования и науки РФ для публикации материалов диссертаций на соискание ученой степени доктора наук, и 7 тезисов докладов на международных конгрессах и конференциях.

<u>Личный вклад автора</u>. Все включенные в диссертацию данные получены лично автором или при его непосредственном участии. Постановка задач, выбор метода их решения и анализ полученных результатов проведены автором лично.

<u>Структура и объем диссертации</u>. Диссертация состоит из введения, восьми глав, заключения, выводов и списка цитируемой литературы. Объем диссертации составляет 347 страниц, включая 103 рисунка, 9 таблиц и библиографию из 489 ссылок.

СОДЕРЖАНИЕ РАБОТЫ

Введение

Во введении рассмотрена актуальность выбранного направления исследований, определены цели и задачи, отражена научная новизна результатов, изложенных в диссертации.

Глава 1. Общие сведения о цеолитах.

В первой главе диссертации приведены общие сведения о цеолитах, включая представление о кристаллической структуре, локализации компенсирующих катионов и распределении атомов алюминия в каркасе цеолитов. В вопросе о распределении алюминия в каркасе различных цеолитов большее внимание уделено его распределению в каркасе цеолита ZSM-5.

Анализ литературных данных позволяет сделать вывод, что распределение алюминия в каркасе высококремнеземных цеолитов типа ZSM-5 существенно влияет на обменную емкость цеолита по отношению к двухвалентным катионам. Сделан обзор литературы по способам введения обменных катионов в цеолиты. Основное внимание уделено различным способам введения мультивалентных катионов, исследуемых в работе. Приведены основные сведения о природе кислотности цеолитов – льюисовской и бренстедовской. Рассмотрен один из основных методов исследования цеолитов – ИК-спектроскопия с применением адсорбции различных пробных молекул – и его применения для исследования цеолитов. Показаны широкие возможности этого метода для исследования активных центров в цеолитах и поверхности катализаторов.

На основании литературных данных сделан вывод, что состояние и локализация катионов может зависеть от способа их введения, а также от условий обработки цеолита. Использование определенного способа введения катионов, а также условий обработки цеолита, таким образом, может позволить целенаправленно получать преимущественно определенный тип катионных структур и исследовать их физико-химические свойства.

Глава 2. Роль наноразмерных металлоксидных кластеров в формировании катионных центров Me²⁺ в цеолитах, модифицированных двухвалентными ионами металлов

Каталитические и адсорбционные свойства цеолитов сильно зависят от природы внекаркасных структур в полостях цеолитов, каковыми могут быть как обменные катионы металлов, так и наночастицы металлов или их оксидов (гидроксидов). Известно, что обменные катионы металлов в катионных формах цеолитов, приготовленных традиционным способом водного ионного обмена, изначально присутствуют в гидратированной форме, то есть, окружены молекулами воды: Meⁿ⁺(H₂O)_x. В результате последующей высокотемпературной дегидратации происходит формирование катионных центров, в которых обменные катионы непосредственно связаны с кислородом каркаса цеолита. Промежуточные структуры, образующиеся в процессе дегидратации гидратированных катионов металлов, мало исследованы. Особенно касается цеолитов, содержащих катионы переходных металлов. Между тем, знание природы промежуточных структур, а также механизма их образования и условий существования (температура, окружающая атмосфера) необходимо для понимания того, с какой именно из внекаркасных структур связано то или иное свойство цеолита.

В главе изложены результаты исследования процесса формирования Me^{2+} . обменных катионных центров а также промежуточных металлсодержащих структур, образующихся при термической дегидратации гидратированных катионов $Me^{n+}(H_2O)_x$ в цеолите Y, содержащем обменные катионы Zn²⁺ или Ni²⁺. Катионы цинка и никеля вводили в цеолит ионным обменом в водных растворах солей азотнокислого цинка и азотнокислого никеля. В качестве исходного материала использовали натриевую форму цеолита Y. Формирование обменных катионных центров Me²⁺ контролировали с использованием ИК спектроскопии тестовых молекул моноксида углерода и адсорбированных образцы на исследуемые при комнатной водорода. температуре и при температуре жидкого азота, соответственно. Формирование обнаруживали с помощью ИК спектроскопии. гидроксидных структур частиц металлов оксидных Образование контролировали с помощью спектроскопии УФ-Вид (частиц ZnO) и ИК спектроскопии адсорбированных молекул СО (частиц NiO).

На рисунке 1 представлены ИК спектры диффузного отражения (ИКСДО) цеолита ZnNaY в области валентных колебаний гидроксильных групп. Спектры измерены после вакуумирования образца при температурах 573, 673 и 773 К.

Рис. 1. ИКСДО гидроксильных групп ZnNaY в основной области валентных колебаний связи ОН. Цеолит дегидратирован при разных температурах: 573 (—), 673 (----) и 773 К ("[—]").

В этих спектрах полосы поглощения (п.п.) при 3545 и 3645 см⁻¹ характеризуют валентные колебания мостиковых гидроксильных групп цеолита, локализованных в содалитовых ячейках и больших полостях соответственно. Слабые полосы при 3745 и 3670 см⁻¹ принадлежат валентным ОН колебаниям групп Si-OH и Al-OH в составе аморфной фазы цеолита. Других полос поглощения, помимо указанных, в ИК спектрах ZnNaY не наблюдалось. Этот факт свидетельствует о том, что в заметных количествах

образование гидроксид-катионов [ZnOH]⁺ в ZnNaY не происходит. Из рисунка 1 также можно видеть, что концентрация мостиковых гидроксильных групп в ZnNaY уменьшается при увеличении температуры его дегидратации. Напротив, концентрация обменных катионных центров Zn²⁺ возрастает. Этот вывод следует из изменений в ИК спектрах адсорбированных H₂ и CO, происходящих с увеличением температуры дегидратации (рис. 2 а и b). Действительно, п.п. при 4037 см⁻¹ и 2215 см⁻¹ соответствуют адсорбции водорода и моноксида углерода (соответственно) на катионных центрах Zn²⁺. Интенсивность этих полос, а следовательно, и концентрация Zn²⁺, возрастает с увеличением температуры дегидратации цеолита. Из рисунка 1 также видно, что при 773 К в цеолите все температурах дегидратации выше мостиковые гидроксильные группы исчезают, замещаясь обменными катионами цинка.

Рис. 2 ИКСДО H_2 (а), адсорбированного при 77 К и давлении 1 Торр, и СО (b), адсорбированного при комнатной температуре и давлении 20 Торр, на ZnNaY, дегидратированном при 573 (—), 673 (----) и 773 К (⁻⁻⁻⁻⁻).

При менее высоких температурах дегидратации цеолита ZnNaY часть цинка присутствует в виде частиц оксида цинка, образующихся в процессе дегидратации в результате диссоциации молекул воды:

 $\left[\operatorname{Zn}(\mathrm{H}_{2}\mathrm{O})_{2}\right]^{2+} + 2\mathrm{Z}^{-} \rightarrow 2\mathrm{H}^{+}\mathrm{Z}^{-} + \operatorname{Zn}(\mathrm{OH})_{2} \rightarrow \mathrm{ZnO} + \mathrm{H}_{2}\mathrm{O} + 2\mathrm{H}^{+}\mathrm{Z}^{-}$ (1)

Образование частиц оксида цинка было обнаружено с помощью УФ-Вид спектроскопии по появлению полосы поглощения в области 40000 см⁻¹ (250 нм) после дегидратации ZnNaY в вакууме при 573 К (рис. 3). Эта полоса может появляться благодаря электронным переходам из валентной зоны в зону проводимости в частицах оксида цинка нанометрических размеров (менее размера больших полостей фожазита) образующихся в процессе дегидратации цеолита (для массивного цинка край полосы поглощения находится при 28000 см⁻¹). Образование гидроксида цинка зарегистрировано не было. По-

видимому, частицы гидроксида цинка нестабильны и разлагаются на оксид цинка и воду. В процессе дегидратации ZnNaY при температурах выше 573 К интенсивность полосы поглощения при 40000 см⁻¹ (250 нм) уменьшается и практически исчезает после вакуумирования при 773 К. Одновременно исчезают полосы поглощения мостиковых ОН групп в ИК спектре цеолита.

Рис. 3. УФ-Вид спектр цеолита ZnNaY, дегидратированного в вакууме при 373 К (----), 573 (----), 673 (----) и 773 К (-----)

Подобным образом происходит формирование обменных катионных центров Ni²⁺ в никельсодержащем цеолите NiNaY. Изменения в ИК спектре гидроксильных групп, происходящие в процессе дегидратации NiNaY, подобны изменениям в ИК спектре ZnNaY (рис. 1). Об увеличении концентрации обменных катионных центров Ni²⁺ с ростом температуры дегидратации цеолита свидетельствует увеличение интенсивности полосы поглощения при 2217 см⁻¹ в ИК спектрах адсорбированного моноксида углерода (рис. 4). Присутствие частиц оксида никеля в образце NiNaY, дегидратированном при умеренно высоких температурах (573-673 К), и их дегидратации подтверждается исчезновение высокотемпературной при присутствием полосы поглощения при 2200 см⁻¹ и уменьшением ее интенсивности с увеличением температуры дегидратации. Полосы поглощения при 2140 и 2100 см⁻¹ возникают в результате образования комплексов СО с катионами Ni⁺, образующимися в результате частичного восстановления NiO как в процессе высокотемпературного вакуумирования, так и в результате взаимодействия с СО.

Рис. 4. ИКСДО моноксида углерода, адсорбированного при комнатной температуре и равновесном давлении 20 Торр на NiNaY, дегидратированном в вакууме при 573 (—), 673 (----) и 773 К ("

Механизм образования катионных центров в процессе дегидратации катионных форм цеолитов может быть общим для разных переходных металлов и металлов, образующих амфотерные оксиды. Особенностью этого механизма является то, что гидратированные обменные катионы в процессе термической дегидратации цеолитов не превращаются непосредственно в обменные катионы гидроксид-катионы, химически ИЛИ связанные С кислородом цеолитного каркаса, а образуют промежуточные формы – частицы оксидов обмениваемых металлов, локализованные в больших полостях цеолитов. Одновременно с образованием оксидных частиц происходит и протонов образование кислотных _ мостиковых гидроксильных групп. Me^{2+} Обменные центры образуются катионные В результате высокотемпературного взаимодействия оксидных частиц с кислотными гидроксильными группами при дальнейшей термической дегидратации. Для двухвалентных металлов, таким образом, образование обменных катионных центров происходит по следующей схеме (Z обозначает каркас цеолита):

 $\left[\operatorname{Me}(\operatorname{H}_{2}\operatorname{O})_{2}\right]^{2+} + 2Z^{-} \rightarrow 2\operatorname{H}^{+}Z^{-} + \operatorname{Me}(\operatorname{OH})_{2} \rightarrow \operatorname{MeO} + \operatorname{H}_{2}\operatorname{O} + 2\operatorname{H}^{+}Z^{-}$ (2)

$$MeO + 2H^+Z^- \rightarrow Me^{2+}Z_2^- + 2H_2O$$

(3)

Представляется вполне очевидным, подобные промежуточные что структуры – частицы оксидов металлов – образуются также в процессе дегидратации катионных форм цеолитов с более высоким отношением Si/Al в каркасе, чем в исследованном в работе цеолите Ү. Более того, оксидные частицы в таких цеолитах могут обладать даже более высокой стабильностью, алюминий-кислородных так как компенсация отрицательных зарядов тетраэдров каркаса цеолита обменными катионами, образующимися в реакции (3), может быть затруднена, если эти тетраэдры удалены друг от друга.

Отметим, что формирование обменных катионных центров в цеолитах при введении катионов способом водного ионного обмена происходит по такому же механизму, как и при введении обменных катионов способами пропитки или твердофазного ионного обмена (нагревание оксида металла с водородной формой цеолита). Существенным отличием, однако, является непосредственная близость реагирующих частиц оксида металла и кислотных гидроксильных групп в случае введения катионов в цеолит способом водного ионного обмена.

Глава 3. Особенности локализации и физико-химических свойств катионов цинка в высококремнеземных цеолитах ZSM-5

ZSM-5 В последние два десятилетия цинксодержащие цеолиты привлекают большой интерес исследователей в связи с их более высокой активностью и селективностью в каталитическом превращении легких алканов в ароматические углеводороды по сравнению с декатионированным ZSM-5. В начале главы приведен обзор литературы, посвященной исследованиям природы цинксодержащих структур в Zn-ZSM-5 и их роли в реакции каталитического дегидрирования алканов. Из обзора следует, что, несмотря на весьма большое число работ как экспериментальных, так и теоретических, в литературе не сложилось единого мнения о природе цинксодержащих структур, активных в этой реакции. Первоначально некоторые исследователи полагали, что активными центрами в реакции дегидрирования алканов являются обменные катионы Zn^{2+} . Такое предположение ставили под сомнение другие исследователи. Они исходили из того, что в каркасе ZSM-5 с Si/Al>10алюминий-кислородные отношением тетраэдры, несущие избыточный отрицательный заряд, расположены далеко друг от друга и обменные катионы Zn²⁺ не способны скомпенсировать заряды таких удаленных тетраэдров. Одной из возможных активных структур рассматривался, в связи с этим, гидроксикатион цинка [ZnOH]⁺. Другое предположение о природе активных цинксодержащих структур, выдвинутое некоторыми исследователями, базировалось на формировании в Zn-ZSM-5 мостиковых оксокатионов [-Zn-O-Zn-]²⁺. Наконец, часть исследователей полагали, что активными структурами в Zn-ZSM-5 являются частицы оксида цинка, локализованные либо на внешней поверхности кристаллитов цеолита, либо внутри канальной системы. Целью исследования цинксодержащих цеолитов Zn-ZSM-5 в настоящей работе было выявление природы структур, активных в дегидрировании легких парафинов.

В главе изложены результаты исследования цеолитов Zn-ZSM-5 с разными отношениями Si/Al в каркасе ZSM-5 и приготовленных с применением разных

способов введения цинка. Катионные структуры в цеолитах исследовали методом ИК спектроскопии с использованием в качестве молекулярных тестов водорода и метана. Адсорбцию водорода изучали как при температуре жидкого азота, так и при комнатной и умеренно повышенных температурах (до 473 К). Метан адсорбировали при комнатной и умеренно повышенных температурах. Выбор водорода в качестве молекулярного теста обусловлен его высокой чувствительностью к состоянию и координации катионов как в цеолитах, так и на поверхности оксидов. Использование метана для тестирования катионных центров представляется естественным, так как метан является простейшим алканом и по взаимодействию метана с центрами адсорбции можно судить о механизме взаимодействия алканов с этими центрами и их превращениях. Образцы Zn-ZSM-5 готовили тремя разными способами: пропиткой водородной формы ZSM-5 (HZSM-5) водным раствором азотнокислого цинка с последующим высушиванием и прокаливанием на воздухе, ионным обменом в водном растворе азотнокислого цинка, а также высокотемпературным взаимодействием паров цинка с HZSM-5 в вакууме.

Применение водорода в качестве молекулярного теста позволяет различить следующие центры в Zn-ZSM-5 (рис. 5): кислотные и силанольные ОН группы (п.п. 4105 и 4125 см⁻¹, соответственно); собственные льюисовские кислотные центры цеолита (образуются вследствие высокотемпературного дегидроксилирования цеолита, п.п. 4030 см⁻¹); обменные катионы Zn^{2+} (п.п. около 4000-4010 см⁻¹ и 3950-3930 см⁻¹).

Рис. 5. ИКСДО H₂, адсорбированного при 77 К и давлении 100 Торр на Zn-ZSM-5 (2% Zn, Si/Al=40), вакуумированном при 873 К. Образец приготовлен способом пропитки HZSM-5 водным раствором азотнокислого цинка с последующим высушиванием и прокаливанием при 773.

предшествующих ИК-исследованиях B адсорбции молекулярного водорода на Zn-ZSM-5 [1] было сделано предположение, что п.п. около 4000 cm^{-1} характеризует адсорбцию H_2 (валентные H-H колебания) на обменных катионах Zn²⁺, так как по положению она близка к п.п. в ИК спектре H₂, адсорбированного на Zn^{2+} в ионообменной форме цеолита ZnY. Отнесение п.п. в области 3950 см⁻¹ не было сделано однозначно. Одним из предположений было отнесение этой полосы к адсорбции водорода на координационно ненасыщенных катионах Zn^{2+} в составе кластеров ZnO в каналах ZSM-5. В однако, показано, что обе низкочастотные полосы настоящей работе. поглощения в ИК спектрах водорода, адсорбированного на цинксодержащих ZSM-5 (в области 3930 – 4010 см⁻¹) возникают вследствие адсорбции H_2 на изолированных обменных (компенсирующих) катионах Zn²⁺. При этом, п.п. 4000-4010 см⁻¹ характеризует катионы Zn²⁺, компенсирующие при ~ отрицательные близко расположенных заряды алюминий-кислородных (находящихся пятичленном тетраэдров В одном или шестичленном структурном кольце); п.п. при 3930-3950 см⁻¹ характеризует катионы Zn^{2+} , компенсирующие отрицательные заряды удаленных друг от друга алюминий-(расположенных в разных пятичленных кислородных тетраэдров или шестичленных кольцах каркаса цеолита). Данный вывод о природе центров адсорбции в Zn-ZSM-5, наиболее сильно возмущающих адсорбированный водород, был сделан на основе анализа и сопоставления ИК спектров водорода, адсорбированного на Zn-ZSM-5, приготовленные разными способами и с разным отношением Si/Al в каркасе цеолита. Были сопоставлены ИК спектры H₂, адсорбированного на Zn-ZSM-5, приготовленные пропиткой, водным ионным обменом и взаимодействием паров Zn с HZSM-5. Во всех случаях в ИК спектрах адсорбированного Н₂ наблюдали присутствие п. п. как при ~ 4000-4010 см⁻¹, так и в области 3930-3950 см⁻¹. В силу того, что в образце Zn-ZSM-5, приготовленном взаимодействием паров цинка с HZSM-5 в условиях вакуума, образование структур, содержащих внекаркасный кислород (кластеры ZnO или оксокатионы [-Zn-O-Zn-]²⁺), невозможно, обе полосы поглощения были отнесены к адсорбции водорода на изолированных обменных катионах Zn²⁺, находящихся в разных положениях относительно атомов алюминия в каркасе ZSM-5. Данное отнесение имеет важное значение для дальнейшего установления природы центров активации водорода и углеводородов в Zn-ZSM-5.

На рисунке 6 приведен ИК спектр водорода, адсорбированного на Zn-ZSM-5 при комнатной температуре (штриховой линией изображен ИК спектр адсорбированного дейтерия). Видно, что адсорбция водорода при комнатной температуре сопровождается появлением двух полос поглощения в

ИК спектре: полосы при 3610 см⁻¹ и полосы при 1935 см⁻¹. П.п. при 3610 см⁻¹ характеризует ОН колебания кислотных гидроксильных групп и свидетельствует об увеличении их концентрации в цеолите в результате адсорбции H₂. Полоса поглощения при 1935 см⁻¹ отнесена нами к валентным колебаниям Zn-H катионов гидрида цинка. Кислотные OH группы и катионы гидрида цинка образуются в результате гетеролитической диссоциации молекул H₂ на обменных катионах Zn²⁺ (точнее, на паре Zn²⁺-O²⁻): $O^{2-}Zn^{2+} + H_2 \rightarrow (ZnH)^+ + (OH)^-$ (4)

Рис. 6. ИК спектры продуктов диссоциации водорода (сплошная линия) и дейтерия (штриховая линия), адсорбированных на Zn-ZSM-5 (Si/Al=40; 4,0 масс.% Zn) при комнатной температуре и давлении 50 Торр. Образец приготовлен способом пропитки.

На рисунке 7 *а* показаны ИК спектры гидридов цинка (Zn-H колебания), образующихся прогревании Zn-ZSM-5 при В водороде при разных температурах. Соответственно этим спектрам, на рисунке 7 *b* приведены ИК спектры водорода, адсорбированного при 77 К на Zn-ZSM-5 после прогрева в водороде при разных температурах. Видно, что диссоциация водорода сопровождается уменьшением интенсивности наиболее низкочастотной п.п. в ИК спектре адсорбированного водорода. Этот результат указывает на то, что центрами диссоциации молекул H_2 являются катионы Zn^{2+} , наиболее сильно возмущающие адсорбированный водород при низких температурах, то есть катионы Zn²⁺, компенсирующие заряды удаленных тетраэдров [AlO₄]⁻.

Образование поверхностных катионов гидрида цинка и кислотных гидроксильных групп при диссоциации H_2 на катионах Zn^{2+} в Zn-ZSM-5 обнаружено в настоящей работе впервые.

Рис. 7. ИКСДО: (а) - гидридов Zn-H, образующихся в Zn-ZSM-5 (Si/Al=25) в результате адсорбции водорода при комнатной и повышенных температурах; (b) - молекулярного водорода, адсорбированного при 77 К на Zn-ZSM-5 до и после прогрева в водороде при различных температурах. (—) перед выдерживанием в водороде; (----) после выдерживания в водороде при комнатной температуре; (⁻⁻⁻⁻⁻) после прогрева в водороде при 373 К; (⁻⁻⁻⁻⁻) после прогрева в водороде при 473 К. Zn-ZSM-5 приготовлен высокотемпературным взаимодействием HZSM-5 с парами цинка.

Подобно диссоциации водорода, в настоящей работе впервые было установлено, что диссоциация С-Н связей в алканах (на примере метана) происходит также на обменных катионах Zn²⁺, характеризующихся наиболее низкочастотной п.п. в ИК спектре водорода, адсорбированного при низких Zn^{2+} . катионах то есть, на компенсирующих температурах (77)К), отрицательные заряды удаленных друг от друга в каркасе цеолита тетраэдров [AlO₄]⁻. На рисунке 8 показан ИК спектр метана, адсорбированного на Zn-ZSM-5 при комнатной температуре. В этом спектре наиболее интенсивная п.п. при 2807 см⁻¹ характеризует валентные С-Н колебания молекул метана,

Рис. 8. Диссоциативная адсорбция метана на Zn-ZSM-5, приготовленном взаимодействием паров цинка с HZSM-5 (Si/Al=25). ИКСДО измерены при комнатной температуре: адсорбция метана при комнатной температуре и давлении 20 Торр (----); последующий прогрев при 473 К (----); последующее вакуумирование образца при комнатной температуре в течение 1 часа (""")

адсорбированного на обменных катионах Zn^{2+} . При нагревании Zn-ZSM-5 с адсорбированным метаном интенсивность этой полосы уменьшается. В то же время, в ИК спектре образца появляются полосы поглощения при 2890, 2927 и 2980 см⁻¹. Эти полосы становятся отчетливо видными после удаления метана вакуумированием при комнатной температуре, и их можно отнести к C-H колебаниям поверхностных катионов метила цинка [Zn-CH₃]⁺, образующихся в результате гетеролитической диссоциации метана на катионах Zn²⁺ (точнее, на катион-анионных парах Zn²⁺-O²⁻).

Вместе с образованием катионов метила цинка в результате диссоциации метана образуются мостиковые (кислотные) гидроксильные группы. Это следует из наблюдаемого в ИК спектре Zn-ZSM-5 увеличения интенсивности п.п. при 3610 см⁻¹ от О-Н колебаний мостиковых гидроксильных групп после прогрева метане. Тестирование образца В Zn-ZSM-5 помощью С низкотемпературной адсорбции водорода показывает, что прогрев цеолита в метане сопровождается уменьшением интенсивности наиболее низкочастотной п.п. в области ~3940 см⁻¹ в ИК спектре адсорбированного водорода, характеризующей катионы Zn²⁺, компенсирующие отрицательные заряды удаленных [AlO₄]⁻ тетраэдров каркаса. Таким образом, диссоциация С-Н связи в молекуле метана, а следовательно, и в молекулах других алканов (метан первый член гомологического ряда алканов, наиболее устойчив к химическим катионах Zn^{2+} . воздействиям) в Zn-ZSM-5 происходит на обменных компенсирующих отрицательные заряды удаленных тетраэдров [AlO₄]⁻ по алкильному механизму. Данное обнаружение позволяет сделать вывод о том, что первой стадией в каталитической реакции дегидрирования алканов на Zn-ZSM-5 является гетеролитическая диссоциация алканов на обменных катионах Zn^{2+} (точнее, на парах $Zn^{2+}-O^{2-}$) с образованием катионов алкила цинка и кислотных гидроксильных групп.

Перечислим основные выводы, полученные на основе результатов исследований Zn-ZSM-5 с помощью ИК спектроскопии адсорбированных молекул H₂ и CH₄:

- обнаружены два типа обменных катионов Zn²⁺, в разной степени возмущающих молекулы водорода, адсорбированного при 77 К. Эти катионы отличаются по удаленности друг от друга в каркасе ZSM-5 алюминий-кислородных тетраэдров, заряды которых они компенсируют;
- Zn^{2+} В установлено, что катионы Zn-ZSM-5, компенсирующие отрицательные заряды удаленных алюминий-кислородных тетраэдров и характеризующиеся наиболее низкочастотной полосой поглощения в ИК адсорбированного при 77 K. спектре водорода, диссоциативно адсорбируют водород при комнатной и повышенных температурах с образованием катионов гидрида цинка и кислотных ОН групп;

 установлено, что эти же катионы диссоциативно адсорбируют метан при умеренно повышенных температурах по алкильному механизму - с образованием катионов метила цинка и кислотных гидроксильных групп. Сделан вывод о том, что активными центрами дегидрирования алканов в Zn-ZSM-5 являются изолированные обменные катионы цинка, компенсирующие отрицательные заряды удаленных друг от друга алюминий-кислородных тетраэдров каркаса цеолита.

Глава 4. Природа катионных центров в Cd-ZSM-5

Из литературы известно, что цеолиты ZSM-5, содержащие катионы кадмия, проявляют высокую активность в реакции дегидроциклизации алканов с высокой селективностью по ароматическим углеводородам (выше, чем Zn-ZSM-5). Кроме этого, Cd-ZSM-5 активен в реакции гидратации ацетилена. Природа катионных структур в этом цеолите, однако, не исследована.

В работе были исследованы кадмийсодержащие образцы на основе цеолита ZSM-5, приготовленные тремя различными способами: ионным обменом в водном растворе нитрата кадмия, пропиткой водородной формы HZSM-5 раствором нитрата кадмия (с последующим прокаливанием на воздухе) И высокотемпературным взаимодействием паров кадмия с дегидратированным HZSM-5 в вакууме. Приготовленные катализаторы, предварительно вакуумированные при 773 К, исследовали с помощью низкотемпературной адсорбции водорода в качестве молекулярного теста. Было установлено, что способ введения кадмия в цеолит влияет на природу образующихся кадмийсодержащих катионных структур (рис. 9).

При введении кадмия водным ионным обменом в дегидратированном Cd-ZSM-5 образуются изолированные обменные катионы Cd²⁺, характеризующиеся п.п. при 3982 и 3935 см⁻¹ в ИК спектре адсорбированного водорода (рис. 9 а). Эти два типа обменных катионов Cd²⁺ вероятнее всего (как и Zn²⁺ в Zn-ZSM-5) отличаются удаленностью от них тетраэдров [AlO₄]⁻, заряды которых они компенсируют. При введении кадмия высокотемпературным взаимодействием паров кадмия с HZSM-5 (рис. 9 b) в основном образуются обменные катионов Cd⁺ (п.п. 4102 см⁻¹) и небольшое количество изолированных катионов Cd²⁺. Катионы Cd⁺ вероятнее всего не являются изолированных катионов Cd²⁺. Катионы Cd⁺ вероятнее всего не являются изолированным, а образуют дикадмиевые катионы Cd₂²⁺ со связью Cd-Cd, что следует из присутствия характерных полос поглощения в УФ области УФ-Вид спектра Cd-ZSM-5, приготовленного таким способом. При введении кадмия пропиткой HZSM-5 водным раствором азотнокислого кадмия (рис. 9 с) с последующим прокаливанием на воздухе в дегидратированном Cd-ZSM-5 образуются как

изолированные обменные катионы Cd^{2+} (п.п. 3982 и 3935 см⁻¹ в ИК спектре адсорбированного водорода), так и оксокатионы $[Cd_2O_x]^{2+}$ (п.п. при 4054 см⁻¹).

Рис. 9. ИКСДО водорода, адсорбированного при 77 К и давлении 100 Торр на цеолитах Cd-ZSM-5, приготовленных: (а) ионным обменом NH₄ZSM-5 в водном растворе азотнокислого кадмия (1,2% Cd); (b) взаимодействием HZSM-5, дегидратированного при 773 К, с парами Cd в вакууме (4,4% Cd); (c) пропиткой HZSM-5 водным раствором азотнокислого кадмия с последующим прокаливанием (4,6% Cd).

Было обнаружено, что катионы Cd^+ при нагревании в вакууме при высоких температурах (выше 773 К) диспропорционируют на катионы Cd^{2+} и нульвалентный кадмий Cd^0 , что проявляется в уменьшении интенсивности п.п при 4102 см⁻¹ и в увеличении интенсивностей п.п. при 3982 и 3935 см⁻¹ в ИК спектре адсорбированного водорода (рис. 10). Кроме этого, при высокотемпературном окислении катионов Cd^+ в присутствии кислорода образуются оксокатионы $[Cd_2O_x]^{2+}$ (п.п. при 4054 см⁻¹). Эти оксокатионы могут быть восстановлены в Cd^+ при прогреве в моноксиде углерода.

Рис. 10. ИКСДО водорода, адсорбированного при 77 К и давлении 100 Торр на Cd-ZSM-5, приготовленном взаимодействием HZSM-5 с парами Cd в вакууме при 773 К: (а) вакуумированного при 773 К; (b) вакуумированного при 873 К; (c) окисленного в присутствии O₂ при 773 К и вакуумированного при комнатной температуре.

Далее, было обнаружено, что молекулярный водород диссоциативно адсорбируется на изолированных обменных катионах Cd^{2+} , наиболее сильно возмущающих адсорбированный при низких температурах водород, а именно, на Cd^{2+} , характеризующихся п.п. 3935 см⁻¹ в ИК спектре адсорбированного H₂.

При этом образуются поверхностные катионы гидрида кадмия (CdH)⁺ и кислотные гидроксильные группы. Поверхностные катионы гидрида кадмия характеризуются п.п. при 1810 см⁻¹ в ИК спектре (рис. 11). Изолированные обменные катионы Cd²⁺ в Cd-ZSM-5, таким образом, обладают свойствами, подобными свойствам изолированных обменных катионов Zn²⁺ в Zn-ZSM-5. Исходя из этого, можно заключить, что, вероятнее всего, активными центрами дегидрирования алканов в Cd-ZSM-5 являются изолированные обменные катионы Cd²⁺, характеризуемые наиболее низкочастотной п.п. в ИК спектре H₂, адсорбированного при 77 К.

Рис. 11. ИКСДО водорода, адсорбированного при комнатной температуре на Cd-ZSM-5, приготовленный способои пропитки, вакуумированный при 773 К.

Таким образом, в работе впервые установлена природа различных катионных центров в кадмийсодержащих ZSM-5, приготовленных различными способами. Это катионы одновалентного кадмия Cd⁺ (в составе дикатионов), оксокатионы кадмия $[Cd_2O_x]^{2+}$, образующиеся при окислении Cd^+ , и два типа изолированных катионов Cd^{2+} . Как и катионы Zn^{2+} в Zn-ZSM-5, первый тип катионов Cd²⁺ - это катионы, компенсирующие отрицательные заряды близкорасположенных алюминий-кислородных тетраэдров каркаса ZSM-5, второй тип - катионы Cd²⁺, компенсирующие отрицательные заряды удаленных друг от друга в каркасе цеолита алюминий-кислородных тетраэдров. Катионы второго гетеролитической типа активны В диссоциации водорода, происходящей с образованием катионов гидрида кадмия и кислотных протонов.

С практической точки зрения применение Cd-ZSM-5 в качестве катализаторов дегидрирования алканов вряд ли представляет интерес, так как образующийся в присутствии водорода металлический кадмий обладает высокой летучестью, что ведет к быстрой дезактивации катализатора. В то же

время, можно предположить, что кадмийсодержащие ZSM-5, приготовленные или способом пропитки, или взаимодействием паров кадмия с HZSM-5, могут представлять интерес с точки зрения их применения в каталитических реакциях, в которых могут использоваться окислительно-восстановительные свойства дикадмиевых катионных структур.

Глава 5. Особенности адсорбционных свойств обменных катионов Cu⁺ в Cu-ZSM-5. ИК исследование адсорбции водорода и азота

Со времени обнаружения уникальных каталитических свойств Cu-ZSM-5 в реакции селективного каталитического восстановления (СКВ) окислов азота и в реакции каталитического разложения окиси азота NO, этой системе уделяется очень большое внимание со стороны научного сообщества, имеющее результатом весьма большое количество научных публикаций. В последнее время Cu-ZSM-5 привлекает внимание, в частности, как катализатор для парциального окисления метана в метанол. Еще одним необычным свойством Cu-ZSM-5 является способность сильно адсорбировать молекулярный азот, что вызывает интерес к нему как к перспективному материалу для фиксации и активации молекулярного азота. Центрами сильной адсорбции N_2 в Cu-ZSM-5 являются обменные катионы меди Cu⁺.

В главе изложены результаты исследования адсорбции водорода в качестве молекулярного теста на цеолите Cu-ZSM-5. Помимо этого, на этом цеолите впервые изучена адсорбция азота с использованием высокочувствительной ИК-спектроскопии диффузного отражения. Полученные данные тестировали квантовохимическим моделированием адсорбционных комплексов азота (методом теории функционала плотности с использованием гибридного функционала B3LYP и набора базисных функций 6-31G^{*}).

Исследуемые образцы Cu-ZSM-5 были приготовлены ионным обменом аммонийной формы ZSM-5 в водном растворе уксуснокислой меди (II). Перед проведением адсорбционных исследований образцы дегидратировали в вакууме, восстанавливали в моноксиде углерода или окисляли в кислороде при 823 К.

Адсорбция водорода

В данном разделе главы изложены результаты исследования адсорбции водорода на Cu-ZSM-5, подвергнутом различным обработкам: дегидратации в вакууме, окислению в кислороде или восстановлению в CO.

На рисунке 12 показаны ИК спектры молекулярного водорода, при 77 К на Cu-ZSM-5, подвергнутом различным адсорбированного обработкам. Полосы поглощения при 4125, 4105 и 4030 см⁻¹ (рис. 12 a-d) возникают благодаря адсорбции H₂ на силанольных ОН группах, кислотных ОН группах цеолита и на собственных льюисовских кислотных центрах цеолита (появляющихся вследствие высокотемпературного дегидроксилирования), соответственно. Низкочастотные полосы при 3300, 3215, 3075 и 2630 см⁻¹ (рис. 12 а) связаны с адсорбцией водорода на медьсодержащих катионных структурах. Так как эти полосы не наблюдаются в ИК спектре H₂, адсорбированного при 77 К на прокаленный в кислороде Cu-ZSM-5 (образец b, рис. 12), то они относятся к Н₂, адсорбированному на восстановленных катионных формах меди, то есть на обменных катионах Cu⁺. П.п. при 4070 см⁻¹ прокаленного в кислороде ZSM-5 характеризует H₂, B ИК спектре адсорбированный на оксокатионах меди, вероятнее всего на мостиковых оксокатионах [Си-О-Си]²⁺.

Рис. 12. ИКСДО молекулярного водорода, адсорбированного при 77 К и давлении 100 Торр на Cu-ZSM-5, после различных обработок: (а) вакуумирования исходного образца при 873 К в течение 2 часов; (b) прокаливания образца (а) в кислороде с последующим вакуумированием при комнатной температуре; (c) вакуумирования образца (b) при 873 К в течение 1 часа; (d) восстановления образца (c) в СО при 873 К и последующего вакуумирования при 873К.

Необычно большой низкочастотный сдвиг частоты колебаний H-H в молекулах H₂, адсорбированных на Cu⁺, может возникать вследствие переноса электронной плотности с орбиталей Cu $(3d_{\pi})$ на антисвязывающие орбитали H₂(σ_u). Адсорбционные комплексы водорода с катионами Cu⁺ оказались прочными как при температуре жидкого азота, так и при комнатной

температуре. ИК спектр водорода, адсорбированного при комнатной температуре на Cu-ZSM-5, восстановленный в CO, показан на рисунке 13. В спектре наблюдаются полосы поглощения при 3300, 3082, 3130, 2630 1810 и 1390 см⁻¹. Все они характеризуют колебания молекул H₂, адсорбированных на катионах Cu⁺. Отнесения полос поглощения в ИК спектрах адсорбированного водорода даны в таблице 1. Полосы поглощения с близкими частотами 3130 и 3082 см⁻¹ (3125 и 3075 см⁻¹ в ИК спектре адсорбции H₂ при 77 K) отнесены к H-H колебаниям молекул водорода, адсорбированных на катионах Cu⁺ в разных координациях.

Рис. 13. ИК спектр H_2 , адсорбированного при комнатной температуре и давлении 50 Торр на Cu-ZSM-5, восстановленном при 873 К в CO.

Таблица 1. Полосы поглощения, наблюдаемые в ИК спектрах H₂, адсорбированного на Cu-ZSM-5, и их отнесение

The second secon		
П.п. (см ⁻¹)	Центр адсорбции	Колебание
4070^{*}	$[Cu-O_x-Cu]^{2+}$	Н-Н
3130/3125*	Cu^+	H-H
3082/3075*	Cu^+	H-H
1390	Cu^+	H-Cu-H (as)
1810	Cu^+	H-Cu-H (s)
2630	Cu^+	Обертон H-Cu-H (as)
3300	Cu^+	неустановленное Н-Н, или составное
		колебание $v_{HH} + v_{Cu-H2} (v_{Cu-H2} - $
		низкочастотное (возможно крутильное)
		колебания комплекса Cu ⁺ -H ₂)

Частоты измерены при 77 К.

Изотерма адсорбции водорода при комнатной температуре на восстановленном Cu-ZSM-5 (рис. 14) имеет форму, характерную для изотермы Ленгмюра.

Рис. 14. Изотерма адсорбции H_2 на Cu-ZSM-5, восстановленном в CO при 873 K, измеренная при 295 K.

Важно подчеркнуть, что такая прочная форма адсорбции водорода на каких-либо цеолитах ранее не наблюдалась. Так как цеолиты, содержащие различные обменные катионы, часто рассматриваются как возможные кандидаты для хранения водорода, то обнаруженная в настоящей работе сильная адсорбция водорода на Cu-ZSM-5 может представлять интерес с точки зрения дальнейшего поиска таких систем.

Что касается применения водорода в качестве молекулярного теста для исследования Cu-ZSM-5, то оно, как показано, позволяет различать катионы Cu⁺ в различных положениях (различном окружении). Кроме этого, использование низкотемпературной адсорбции водорода позволяет детектировать оксокатионы меди, в отличие от традиционного молекулярного теста – моноксида углерода, активно восстанавливающего оксокатионы меди даже при низких температурах.

Адсорбция азота

В связи с открытием сильной адсорбции азота на катионах Cu^+ в Cu-ZSM-5 в последние годы в научной литературе дискутируется вопрос о формах адсорбции молекул азота на Cu^+ . Первоначально предполагалось, что молекулы азота адсорбируются линейно, так что одна молекула N_2 адсорбируется на одном центре Cu^+ . Позднее появились экспериментальные свидетельства того, что при адсорбции N_2 на Cu-ZSM-5 образуется также другая, более прочная, форма адсорбированного азота (предположительно двухцентровая), являющаяся, по всей вероятности, неактивной в ИК спектрах.

Использование высокочувствительной спектроскопии диффузного отражения в настоящей работе позволило получить новые сведения о структуре адсорбционных комплексов молекулярного азота с катионами Cu⁺ в Cu-ZSM-5.

Рис. 15. ИКСДО азота, адсорбированного на Cu-ZSM-5 (восстановленный в СО и вакуумированный при 873 К) при комнатной температуре и равновесном давлении 50 Торр (1), 10 Торр (2), 1 Торр (3), 0,1 Торр (4) и 0,01 Торр (5).

В работе впервые в ИК спектрах азота (рис. 15), адсорбированного при комнатной температуре на Cu-ZSM-5, восстановленном в CO, вместе с интенсивной полосой поглощения при 2294 см⁻¹, ранее отнесенной к N-N колебаниям молекул N_2 , линейно адсорбированным на Cu^+ , была обнаружена очень слабая полоса поглощения при 2207 см⁻¹. Интенсивность этой полосы возрастала при уменьшении давления азота, в то время как интенсивность полосы при 2294 см⁻¹ убывала. Наиболее простая модель адсорбционных комплексов, образующихся при адсорбции N_2 на Cu^+ В Cu-ZSM-5, позволяющая объяснить происхождение спектре двух полос В адсорбированного N₂ и противоположные изменения их интенсивностей при изменении давления, представляет собой двухъядерный комплекс, состоящий из двух катионов меди и молекул азота, адсорбированных в разной форме (рис. 16). При высоких давлениях комплекс (рис. 16 а) содержит три молекулы адсорбированного азота: одну мостиковую, соединяющую катионы меди, и две терминальные. В таком симметричном комплексе N-N колебания мостиковой молекулы не активны в ИК спектре. При уменьшении давления и удалении одной из терминальных молекул N₂ комплекс становится несимметричным (рис. 16 b), и колебания мостиковой молекулы азота становятся активны. Соответственно, в ИК спектре появляется полоса поглощения 2207 см⁻¹.

Рис. 16. Предложенная модель для адсорбции азота на Cu-ZSM-5: (a) симметричный комплекс 2Z-Cu₂-3N₂ (Z обозначает каркас цеолита), образующийся в Cu-ZSM-5 при высоких давлениях N₂; (b) асимметричный комплекс 2Z-Cu₂-2N₂, образующийся при более низких давлениях N₂; (c) симметричный комплекс 2Z-Cu₂-N₂, существующий при очень низких давлениях N₂.

Предложенную модель проверяли с помощью квантовохимического моделирования. Модельные кластеры, использованные в расчетах, состояли из фрагментов каркаса цеолита и адсорбционных комплексов, включающих разное количество молекул адсорбированного азота. Все структуры оказались устойчивыми, а вычисленные частоты колебаний находятся в хорошем соответствии с экспериментальными данными (табл. 2).

Существование обнаруженных в настоящей работе двухъядерных адсорбционных комплексов азота имеет важное значение для понимания природы активных центров каталитического разложения NO в Cu-ZSM-5. А именно, подобные двухъядерные центры (пары катионов меди) могут быть активными центрами в этой реакции.

Таким образом, в работе впервые обнаружена сильная адсорбция водорода на обменных катионах Cu⁺ в Cu-ZSM-5. Показано, также, что использование молекулярного водорода в качестве теста позволяет идентифицировать катионы меди Cu-ZSM-5 в различных состояниях. Впервые, с использованием ИК высококонтрастной спектроскопии диффузного отражения экспериментально наблюдали двухцентровую адсорбцию молекул азота на катионах Cu⁺. Анализ спектроскопических данных позволил предложить модель адсорбционных комплексов азота, объясняющую эти данные. Наконец, обнаруженные в работе двухцентровые формы адсорбированного азота могут свидетельствовать о том, что подобные пары центров Cu⁺ могут быть активными в реакции разложения NO на Cu-ZSM-5.

Таблица 2. Вычисленные частоты N-N колебаний, интенсивности ИК полос и расстояния Cu-Cu для различных комплексов «цеолит-Cu⁺-азот».

Комплекс	Вычисленные	Вычисленные	Вычисленные
$Z-2Cu(I)-N_2$	N-N частоты	интенсивности	расстояния
	$(CM^{-1})^{a}$	(км моль ⁻¹)	Cu-Cu (Å)
$Al_2Si_4O_{16}H^*{}_{12}Cu_2$	-	-	5,61
$Al_2Si_4O_{16}H_{12}^*Cu_2-N_2$	2166	0,0	4,69
	двухцентровая		
	мостиковая		
$Al_2Si_4O_{16}H_{12}^*Cu_2-2N_2$	2184	70,4	4,72
	двухцентровая		
	мостиковая		
	2288	143,7	
	терминальная		
$A1 Si \cap H^* \cap 2N$	2104	0.0	4 70
$A_{12}S_{14}O_{16}H^{+}_{12}Cu_{2}-S_{1N_{2}}$	2194	0,0	4,79
	двухцентровая		
	мостиковая	204.0	
	2297	304,0	
	терминальная		
	(асимметричное)		
	2304	0,0	
	терминальная		
	(симметричное)		

^а Использован масштабирующий множитель 0,97.

Глава 6. Формирование, термостабильность и адсорбционные свойства катионных центров Ni⁺ в Ni-ZSM-5.

Наряду с цеолитами, содержащими катионы меди, цеолиты, содержащие катионы других переходных металлов, также являются активными катализаторами в процессах СКВ окислов азота. Это, в частности, касается Ni-ZSM-5. Известна также высокая активность Ni-ZSM-5 в реакции разложения NO в условия микроволнового разряда. Принято считать, что активные металлы в этих реакциях изменяют свою степень окисления. Это

предполагает взаимные превращения катионов Me²⁺ и Me⁺ в процессе реакции. Низковалентные катионы Ni⁺ и Co⁺ в ZSM-5 ранее наблюдались только в составе поверхностных карбонильных комплексов. В присутствии моноксида углерода обменные катионы Ni⁺ и Co⁺ в ZSM-5 сохраняют свое состояние при умеренно высоких температурах. Изучение свойств низковалентных катионов переходных металлов важно для понимания механизмов каталитических реакций с их участием. Интерес к изучению адсорбционных свойств таких катионов обусловлен также тем, в низковалентном состоянии эти катионы могут оказаться способными сильно активировать адсорбированные молекулы простых газов (азот, водород), как это имеет место в случае низковалентных катионов Cu⁺. Помимо этого, исследование физико-химических свойств низковалентных катионов, механизма формирования И температурной стабильности представляет самостоятельный фундаментальный интерес.

В настоящей главе описаны результаты исследования никельсодержащего ZSM-5 с точки зрения формирования, стабильности и адсорбционных свойств обменных катионов никеля.

Ni-ZSM-5 готовили ионным обменом водородной формы ZSM-5 в водном растворе уксуснокислого никеля с последующим высушиванием и прокаливанием на воздухе. Полученные образцы перед исследованием подвергали термовакуумной обработке, а также восстановительной обработке в СО в вакуумных ИК и ЭПР кюветах.

При ИК-спектроскопическом исследовании состояния катионов никеля в качестве молекулярных тестов использовали моноксид углерода, водород и азот, показавшие себя эффективными тестами в исследованиях состояния и координации других катионов в цеолитах. Помимо этого присутствие низковалентных катионов Ni⁺ в Ni-ZSM-5 регистрировали методом электронного парамагнитного резонанса.

рисунке 17 представлен ИК спектр Ha моноксида углерода, Ni-ZSM-5 адсорбированного дегидратированном вакууме ЛО на В восстановления и после восстановления в СО в течение разных промежутков времени. Видно, что до восстановления никель в Ni-ZSM-5 присутствует, в основном, в состоянии Ni^{2+} в составе обменных катионов (п.п. 2210 и 2220 см⁻¹) и оксидных структур (п.п. 2000 см⁻¹). Последними могут быть или частицы оксида никеля или оксокатионы никеля (Ni-O-Ni)²⁺. В процессе нагревания в СО растут полосы поглощения при 2135 и 2090 см⁻¹, характеризующие симметричные и асимметричные колебания молекул СО в дикарбонильных комплексах никеля в состоянии Ni⁺. Помимо этого появляется полоса поглощения при 2058 см⁻¹, характерная для карбонилов нульвалентного никеля.

Рис. 17. ИКСДО СО, адсорбированного при комнатной температуре и давлении 20 Торр на Ni-ZSM-5: (а) прокаленном на воздухе и вакуумированном при 673 К, (b) восстановленном в СО при 550 К 10 мин., (c) восстановленном в СО при 550 К в течение 2 часов, (d) восстановленном в СО при 550 К в течение 4 часов.

Одновременно с ростом интенсивности этих полос происходит уменьшение интенсивности п.п. в области 2200 - 2220 см⁻¹. В большей степени уменьшается п.п. при 2200 см⁻¹, что указывает на то, что низковалентные формы никеля в основном образуются благодаря восстановлению оксидных форм никеля. После восстановления Ni-ZSM-5 осторожно вакуумировали при умеренноповышенной температуре 550 К до полного удаления адсорбированного СО. Известно, что присутствие СО благоприятствует формированию катионов Ni⁺ в Ni^+ прочности карбонильных комплексов И. следовательно, силу термодинамической выгодности их формирования. Поэтому, для обнаружения катионов Ni⁺, оставшихся после удаления CO, использовали в качестве молекулярных тестов азот и водород.

На рисунке 18 *а* приведен ИК спектр азота, адсорбированного на восстановленный в СО и вакуумированный при 550 К Ni-ZSM-5. Слабая п.п. при 2339 см⁻¹ относится к N₂ (N-N колебания), адсорбированному на катионах Ni²⁺. Интенсивная п.п. при 2250 см⁻¹ отнесена нами к N-N колебаниям N₂, адсорбированного на катионах Ni⁺. После высокотемпературной вакуумной обработки Ni-ZSM-5 (рис. 18 b) эта полоса практически полностью исчезает из спектра адсорбированного N₂. Одновременно возрастает интенсивность п.п. при 2339 см⁻¹. Уменьшение интенсивности п.п. при 2250 см происходит вследствие уменьшения концентрации катионов Ni⁺ в результате их диспропорционирования:

$$2\mathrm{Ni}^{+} \rightarrow \mathrm{Ni}^{2+} + \mathrm{Ni}^{0} \tag{5}$$

Рис. 18. ИКСДО азота, адсорбированного при комнатной температуре и равновесном давлении 50 Торр на Ni-ZSM-5, восстановленном в СО при 550 К после: (а) удаления СО вакуумированием при 660 К и (b) последующего нагревания в вакууме при 823 К в течение 2 часов.

Таким образом, исследование адсорбции азота на Ni-ZSM-5 показывает, что низковалентные катионы Ni⁺ могут быть стабильны в этом цеолите при умеренно повышенных температурах в отсутствие CO. Этот вывол подтверждается проведенными В работе ЭПР исследованиями также термостабильности Ni⁺. Выдерживание образца Ni-ZSM-5, содержащего Ni²⁺ и Ni⁰, в СО при 550 К приводит к постепенному восстановлению содержания Ni⁺. То есть, реакция (5) является обратимой.

Образование комплексов молекул азота с обменными катионами Ni^+ в Ni-ZSM-5, характеризующихся п.п. при 2250 см⁻¹, сильно сдвинутой в область низких частот относительно частоты колебаний свободных молекул N_2 (2331 см⁻¹), обнаружено в настоящей работе впервые.

Рис. 19. ИКСДО молекулярного водорода, адсорбированного при 77 К и давлении 100 Торр на (а) HZSM-5, вакуумированном при 823 К и на Ni-ZSM-5, восстановленном в СО при 550 К и (b) вакуумированном при 823 К, и (c) выдержанном после этого в СО при 550 К в течение 20 часов и вакуумированном при 600 К.

Изучение низкотемпературной адсорбции водорода на Ni-ZSM-5, проведенное в настоящей работе, впервые показало, что катионы Ni⁺ также сильно возмущают адсорбированные молекулы водорода, что приводит к большому низкочастотному сдвигу частоты их Н-Н колебаний по сравнению с частотой колебаний свободных молекул Н₂. На рисунке 19 показаны ИК спектры водорода, адсорбированного на Ni-ZSM-5, содержащем как катионы Ni^{2+} . так И Ni⁺. Молекулы водорода, взаимодействующие с Ni^+ . характеризуются полосой поглощения при 3430 см⁻¹ (рис. 19 с), что на 730 см⁻¹ ниже частоты H-H колебаний H₂ в газовой фазе.

Таким образом, в работе впервые обнаружено, что обменные катионы Ni⁺ в Ni-ZSM-5 способны образовывать адсорбционные комплексы с молекулами N₂ и H₂, в которых связи N-N и H-H сильно активированы. Сильное возмущение колебаний молекул водорода и азота, адсорбированных на катионах Ni⁺ в Ni-ZSM-5 может быть объяснено перераспределением заряда между орбиталями адсорбированных молекул и d-орбиталями Ni⁺.

Глава 7. Исследование природы различных форм галлия в галлийсодержащих цеолитах и нанесенных галлийоксидных системах

Подобно Zn-ZSM-5, галлийсодержащие высококремнеземные цеолиты и оксиды вызывают все более возрастающий интерес в качестве катализаторов дегидрирования/дегидроциклизации алканов. Помимо этого, галлий-содержащие катализаторы являются эффективными в реакции СКВ окислов азота углеводородами, окислительном аммонолизе пропана, синтезе анилина из фенола и аммиака. Для повышения эффективности этих катализаторов необходимо понимание механизмов каталитических реакций, происходящих с их участием, природы различных структур галлия, и степени их участия в этих реакциях.

В современной литературе, несмотря на весьма большое количество публикаций, посвященных исследованию галлийсодержащих катализаторов дегидрирования и дегидроциклизации алканов, нет единого понимания природы активных центров в этих катализаторах. Для массивного Ga_2O_3 и нанесенных галлийсодержащих катализаторов предполагалось, что активными центрами в реакции дегидрирования (включая окислительное) являются катионные центры Ga^{3+} . В случае галлийсодержащих цеолитов (Ga-ZSM-5), как полагают многие исследователи, активными центрами являются катионы Ga^+ . Такое предположение обосновывается тем, что в ряде исследований в восстановленных Ga-ZSM-5 галлий идентифицирован в состоянии Ga^+ . Вместе с тем, такое предположение плохо согласуется с результатами квантово-

химических оценок энергии активации реакции дегидрирования алканов на катионах Ga⁺.

В данной главе диссертации приведены экспериментальные результаты исследований галлийсодержащих цеолитов и нанесенных галлийоксидных систем методами ИК-спектроскопии адсорбированных тестовых молекул оксида углерода и водорода и *in situ* РФЭС спектроскопии.

Образцы Ga-ZSM-5 и Ga-MOR готовили пропиткой водородных форм ZSM-5 и морденита водным раствором азотнокислого галлия с последующим высушиванием и прокаливанием на воздухе при 773 К. Нанесенные галлийоксидные образцы Ga/Al₂O₃, Ga/ZrO₂, Ga/TiO₂, Ga/MgO и Ga/SiO₂ также готовили пропиткой исходных носителей водным раствором азотнокислого галлия с последующим высушиванием и прокаливанием. Поверхностные концентрации галлия в образцах находились пределах 0,035–0,055 г Ga₂O₃ на квадратный метр поверхности, что существенно ниже монослойного покрытия.

In situ РФЭС исследование Ga-ZSM-5

Полученные результаты in situ РФЭС исследований Ga-ZSM-5, в общем, находятся в согласии с литературными данными. Было подтверждено, что в процессе высокотемпературного восстановления исходного Ga-ZSM-5 в водороде галлий мигрирует с внешней поверхности кристаллитов цеолита (где он находится в форме частиц Ga₂O₃) внутрь каналов цеолита и замещает кислотные протоны. О замещении кислотных протонов цеолита катионами галлия в процессе высокотемпературного восстановления свидетельствует наблюдаемое исчезновение п.п. поглощения при 3610 см⁻¹ от кислотных гидроксильных групп в ИК спектре цеолита. Также, наблюдаемое изменение РФЭС спектров Ga-ZSM-5 вследствие его восстановления свидетельствует о миграция галлия с внешней поверхности кристаллитов цеолита внутрь каналов цеолита и образование обменных катионов Ga⁺ (рис. 20 а). Из спектров, представленных на рисунке 20 а, видно, что в результате восстановления Ga-ZSM-5 интенсивность пика в области Ga 3d с энергией связи, характерной для Ga³⁺, сильно уменьшается и одновременно появляется новый пик с энергией связи, характерной для Ga⁺. Важно отметить, что спектр 2 на рисунке 20 а измерен после восстановления Ga-ZSM-5 и последующего его охлаждения до комнатной температуры в присутствии водорода. В таком образце галлий, в основном, находится внутри каналов цеолита в виде обменных катионов Ga⁺. Этот результат находится в согласии с выводами, ранее сделанным в литературе. Однако наши последующие РФЭС измерения позволили по-новому взглянуть на поведение галлия и разнообразие его форм в Ga-ZSM-5. А именно,

в работе было обнаружено, что высокотемпературное вакуумирование восстановленного Ga-ZSM-5, содержащего Ga⁺, в условиях сверхвысокого вакуума приводит к образованию металлического галлия и его диффузии на внешнюю поверхность цеолита, о чем свидетельствует появление интенсивного пика с низкой энергией связи, характерной для Ga⁰, в РФЭС спектре образца (рис. 20 b, линии 2 и 3).

Рис. 20. РФС спектры Ga-ZSM-5 - спектральная область Ga 3d + O 2s: (a) линия 1 – свежепрокаленный Ga-ZSM-5, линия 2 – восстановленный при 823 К в водороде, охлажденный в присутствии водорода и вакуумированный при комнатной температуре; (b) линия 1 – тот же спектр, что и линия 2 на рис. а, линия 2 - образец вакуумирован при 823 К в течение 1 часа, линия 3 – образец вакуумирован при 823 К в течение 1 часа и охлажден до комнатной температуры, линия 4 – образец после высокотемпературного вакуумирования прогрет при 823 К и охлажден в водороде.

Единственным объяснением этого факта может быть диспропорционирование обменных катионов Ga⁺ на нульвалентный галлий и обменные катионы трехвалентного галлия Ga³⁺. Продукты диспропорционирования катионов Ga⁺ в Ga-ZSM-5 - металлический галлий и обменные катионы Ga³⁺ - оказались стабильны только в условиях сверхвысокого вакуума. По-видимому, по этой причине диспропорционирование катионов Ga⁺ в Ga-ZSM-5 ранее не наблюдалось. Такое диспропорционирование является обратимым, и прогрев образца, содержащего металлический галлий и катионы Ga³⁺, в водороде и охлаждение в присутствии водорода приводят к исчезновению нульвалентного галлия, так что результирующий РФЭ спектр оказывается таким же, как и РФЭ спектр образца до высокотемпературного вакуумирования в сверхвысоком вакууме. Таким образом, можно написать обратимое уравнение диспропорционирования Ga⁺:

$$3Ga^+ \leftrightarrow 2Ga^0 + Ga^{3+}$$
 (6)

Данный результат позволил предположить, что катионы Ga⁺ могут обратимо диспропорционировать на Ga⁰ и Ga³⁺ также в условиях каталитической реакции. При этом, время жизни Ga³⁺ в реальных условиях

может быть мало. Представляется вполне очевидным, что активность катионных центров Ga^{3+} в Ga-ZSM-5 в активации алканов может быть существенно выше, чем активность Ga^+ . Действительно, известно, что льюисовские кислотные центры Ga^{3+} в Ga_2O_3 , Al^{3+} в Al_2O_3 и Zn^{2+} в Zn-ZSM-5 активны в диссоциации алканов. Тогда вполне разумно предположить, что активными центрами дегидрирования алканов как в Ga_2O_3 и нанесенных галлиевых катализаторах, так и в Ga-ZSM-5 являются обменные катионы Ga^{3+} .

Стабилизация низковалентных катионов галлия Ga⁺ в Ga-ZSM-5 является весьма необычным явлением. Известно, что неорганические соединения одновалентного галлия неустойчивы и диспропорционируют на соединения трехвалентного галлия и металлический галлий. Стабильность обменных катионов галлия Ga⁺ в Ga-ZSM-5 может быть обусловлена тем, что катионов Ga³⁺ существование обменных компенсирующих не вполне энергетически выгодно вследствие значительной удаленности каркасных атомов кислорода, входящих в состав алюминий-кислородных тетраэдров, отрицательные заряды которых катионы Ga³⁺ компенсируют. Катионные центры Ga³⁺, в которых катионы галлия компенсируют отрицательные заряды трех удаленных алюминий-кислородных тетраэдров, очевидно, являются высокоэнергитичными и обладают повышенной активностью в диссоциации различных молекул (водород, вода, углеводороды) и вследствие этого разрушаются в присутствии нульвалентного галлия Ga⁰ с образованием катионов Ga⁺. Например:

$$Z_{3}^{-}-Ga^{3+} + 2Ga^{0} + H_{2} \rightarrow Z^{-}H^{+} + 2Z^{-}-(GaH)^{2+} + 2Ga^{0} \rightarrow 2(Z^{-}-H^{+}) + Z^{-}Ga^{+} + 2Ga^{0} \rightarrow 3(Z^{-}Ga^{+}) + H_{2}$$
(7)

В реальных условиях катализа, несмотря на быстрое разрушение катионов Ga³⁺, их концентрация может постоянно пополняться вследствие диспропорционирования катионов Ga⁺.

Природа галлийсодержащих структур в Ga-MOR и Ga-ZSM-5.

Данные ИК-спектроскопических исследований адсорбции моноксида углерода и диссоциации водорода.

В работе было выдвинуто предположение о том, что в цеолитах с менее высоким отношением Si/Al в каркасе, чем в ZSM-5 (например, в мордените), и на поверхности оксидных носителей стабилизация катионов галлия в состоянии Ga³⁺ может быть более энергетически выгодна, и такие катионные центры являются устойчивыми. С целью проверки справедливости такого предположения в работе были проведены сравнительные ИК исследования адсорбции СО и диссоциации водорода на Ga-MOR (Si/Al=5) и Ga-ZSM-5

(Si/Al =13,5). С помощью адсорбции СО детектировали катионные центры Ga³⁺ и Ga⁺. Измеряя количество поглощенного водорода в результате прогрева центров Ga^{3+} . образцов в H_2 . оценивали концентрацию стабильных диссоциативно адсорбирующих водород с образованием поверхностных гидридов галлия. Концентрация стабильных катионов Ga³⁺ в восстановленном Ga-ZSM-5, вакуумированном при 823 К в условиях среднего вакуума ($\sim 10^{-4}$ -10⁻⁵ Topp). оказалась низкой (менее 4% от общего содержания галлия). Большая часть галлия находится в состоянии Ga⁺, как и в Ga-ZSM-5, восстановленном и охлажденном в присутствии водорода в условиях РФЭС эксперимента (рис. 20 а, линия 2). Это соответствует литературным данным о состоянии галлия в восстановленном Ga-ZSM-5. Вероятно, в восстановленном Ga-ZSM-5, подвергнутом вакуумированию в условиях среднего вакуума, присутствует остаточная вода и/или водород в количествах, достаточных для катионов Ga³⁺. В отличие разрушения обменных ОТ Ga-ZSM-5. в восстановленном Ga-MOR концентрация стабильных обменных катионов Ga³⁺ оказалась существенно выше (приблизительно в 5 раз), несмотря на одинаковое содержании галлия. Эти катионы (точнее, катион-анионные пары Ga³⁺-O²⁻) диссоциативно адсорбируют водород с образованием поверхностных катионов гидрира галлия и гидроксильных групп. На рисунке 21 а и в приведены ИК высокотемпературной спектры продуктов диссоциации водорода на восстановленных Ga-MOR и Ga-ZSM-5 в области ОН и Ga-H колебаний.

Рис. 21. ИКСДО продуктов диссоциации H_2 , адсорбированного при 823 К на восстановленные: (a) Ga-MOR и (b) Ga-ZSM-5, (спектры получены вычитанием спектров образцов до адсорбции H_2 из спектров образцов после адсорбции H_2).

Из спектров видно, что диссоциация водорода на Ga-MOR сопровождается появлением гидридов галлия (п.п. в области 2000-2100 см⁻¹) и кислотных гидроксильных групп (п.п. при 3613 см⁻¹). Образование гидридов галлия

(катионов гидрида галлия) одновременно с кислотными гидроксильными группами свидетельствует о том, что диссоциация водорода происходит на обменных катионах Ga³⁺. При диссоциации водорода на Ga-ZSM-5 интенсивность появляющихся в ИК спектре образца п.п. от кислотных ОН групп (3620 см⁻¹) чрезвычайно низка. Это позволяет предположить, что в диссоциации водорода могут принимать участие в большой степени центры Ga³⁺, локализованные на аморфной фазе цеолита.

Ga³⁺ Диссоциация водорода на центрах стабильных катионных подтверждается различиями в ИК спектрах адсорбированного СО до и после диссоциативной адсорбции водорода, а именно исчезновением в ИК спектрах адсорбированного СО п.п. при 2218 см⁻¹, характеризующей адсорбцию СО на Ga³⁺, после диссоциативной адсорбции водорода. Такие изменения в ИК спектрах адсорбированного СО можно видеть на рисунке 22. Важно отметить, что прогревание галлийсодержащих Ga-ZSM-5 и Ga-MOR в водороде не влияет на катионы Ga⁺ (характеризующиеся п.п. в области 2140-2150 см⁻¹ в ИК спектрах адсорбированного СО).

Рис. 22. ИКСДО СО, адсорбированного на: (а) Ga-MOR, восстановленный в H_2 и вакуумированный при 823 К, линия 1 – до диссоциативной адсорбции водорода, линия 2 - после диссоциативной адсорбции водорода при 823 К; (b) Ga-ZSM-5, восстановленный в H_2 и вакуумированный при 823 К, линия 1 – до диссоциативной адсорбции водорода, линия 2 - после диссоциативной адсорбции водорода при 823 К.

Таким образом, на примере Ga-MOR показано, что в цеолитах с меньшим отношением Si/Al в каркасе, чем в ZSM-5, формируются стабильные обменные катионы Ga³⁺ в концентрации существенно более высокой, чем в Ga-ZSM-5. Такие катионы способны диссоциативно адсорбировать водород с образованием термостабильных катионов гидрида галлия.

Интересно отметить, что в условиях среднего вакуума, концентрация продуктов диспропорционирования катионов Ga⁺ в восстановленном Ga-ZSM-5

зависит от температуры. При высоких температурах концентрация этих продуктов (Ga³⁺ и Ga⁰) значительно выше, чем при комнатной. Катионы Ga³⁺, как оказалось, могут быть стабилизированы высокотемпературным окислением восстановленного Ga-ZSM-5 в кислороде. Этот факт был установлен, исходя из результатов изучения адсорбции СО на восстановленном Ga-ZSM-5 и на этом же образце, подвергнутом высокотемпературному окислению в кислороде. А именно, наблюдалось, что в результате такого окисления концентрация катионных центров Ga³⁺, характеризующихся п.п. при 2218 см⁻¹ в ИК спектре адсорбированного CO, сильно возрастает (рис. 23). Катионные центры Ga³⁺ в восстановленном Ga-ZSM-5, подвергнутом окислению в кислороде, могут быть Ga^0 . TOMV. стабилизированы благодаря что нульвалентный галлий образующийся при диспропорционировании Ga⁺, превращается в оксид галлия Ga_2O_3 , который, в отличие от Ga^0 , не способен участвовать в восстановлении Ga^{3+} с образованием Ga^{+} согласно уравнению 6. Таким образом, при высоких температурах даже в условиях среднего вакуума большая часть галлия в восстановленном Ga-ZSM-5 находится в форме обменных катионов Ga^{3+} .

Рис. 23. ИКСДО СО, адсорбированного при комнатной температуре и давлении 50 Торр на: (а) восстановленный Ga-ZSM-5, вакуумированный при 823 К ; (b) образец (а), прокаленный при 823 К в кислороде при давлении 50 Торр в течение 10 мин. и вакуумированный при 823 К в течение 20 мин.

In situ РФЭС исследование нанесенных галлийоксидных систем

Важно отметить, что применение РФЭС для исследования внешней поверхности цеолитов оказывается значительно более эффективным, чем для исследования внутренней поверхности Это было ИХ каналов. продемонстрировано В первом разделе настоящей главы. Вывод 0 Ga^{3+} внутри формировании катионов каналов ZSM-5 В результате диспропорционирования Ga⁺ был сделан главным образом на основании наблюдения образования большого количества металлического галлия на внешней поверхности цеолита. В случае нанесенных на оксидные носители галлиевых систем применение РФЭС позволяет получать прямые данные о состояния галлия на поверхности этих носителей.

В работе показано, что при восстановлении нанесенных галлийоксидных систем на поверхности оксидных носителей образуются формы галлия, содержащие, в основном, Ga^0 и Ga^{3+} (как в образцах, охлажденных в присутствии водорода, так и в образцах, вакуумированных при высоких в условиях сверхвысокого вакуума). Особенно ярко это температурах проявляется в случае галлия, нанесенного на кислотные носители Al₂O₃ и TiO₂. В случае более инертного SiO₂ и основного MgO, в процессе восстановления нанесенного оксида галлия наряду с Ga^0 также образуется заметное количество Ga⁺. Образование Ga⁰ при восстановлении нанесенных галлиевых систем, вероятнее всего, происходит по механизму, подобному образованию Ga⁰ в восстановленном Ga-ZSM-5. А именно, вначале происходит образование катионов Ga⁺, замещающих наиболее кислотные поверхностные протоны носителя, а затем их быстрое диспропорционирование на Ga^0 и Ga^{3+} . Катионы Ga⁺ на поверхности кислотных оксидных носителей неустойчивы, в отличие от Ga^+ в Ga-ZSM-5. Напротив, Ga^{3+} (вместе с Ga^0) устойчивы, как это свойственно для неорганических соединений галлия. На рисунке 24 в качестве примера приведены ΡФЭ спектры исходного И восстановленного Ga/Al_2O_3 .

Рис. 24. РФЭС-области Ga 3d + O 2s для Ga_2O_3/Al_2O_3 (5% масс. Ga): (а) прогретого в токе аргона при 823 K; (b) восстановленного в токе водорода при 823 К. Спектральные интенсивности нормированы на интенсивность линии Al 2p.

Можно видеть, что в восстановленном образце галлий присутствует только в состояниях Ga^0 и Ga^{3+} (как и в Ga-ZSM-5, вакуумированном при высоких температурах в сверхвысоком вакууме). Видно также, что в результате

высокотемпературного восстановления оксида галлия, нанесенного на Al₂O₃, Ga^{3+} . диспергирование В состоянии по-видимому, происходит галлия взаимодействием вследствие восстановления Ga₂O₃ последующим с низковалентных форм галлия с носителем и образования изолированных Ga^{3+} поверхностных катионов В результате диспропорционирования поверхностных катионов Ga⁺.

Диссоциативная адсорбция водорода на нанесенных галлийоксидных системах

Установлено, что стабильные поверхностные катионы Ga³⁺ в нанесенных галлийоксидных системах способны диссоциативно адсорбировать водород с образованием устойчивых поверхностных гидридов галлия Ga³⁺-H⁻. Оказалось, что концентрация поверхностных гидридов галлия, образующихся в результате диссоциативной адсорбции водорода, сильно зависит от природы носителя и наиболее высока в случае носителей, обладающих кислотными свойствами. Частоты колебаний Ga-H в поверхностных гидридах галлия также зависят от Это дает основание заключить, природы носителя. что центрами диссоциативной адсорбции водорода являются катионы Ga³⁺, связанные с носителем. На рисунке 25 показаны ИК спектры водорода (в области колебаний Ga-H), диссоциативно адсорбированного на Ga/Al₂O₃, Ga/ZrO₂, Ga/TiO₂, Ga/MgO и Ga/SiO₂. Из рисунка видно, что интенсивности полос поглощения колебаний Ga-H и их положения (а соответственно, и частоты этих колебаний) зависят от природы носителя.

Рис. 25. ИК спектры поверхностных гидридов галлия, образовавшихся после прогрева восстановленных образцов: Ga/Al₂O₃, Ga/ZrO₂, Ga/TiO₂, Ga/MgO и Ga/SiO₂ (сверху вниз) в водороде при 823 К. Интенсивности спектров нормированны на содержание галлия.

В заключение обсуждения результатов исследований галлийсодержащих цеолитов и нанесенных галлиевых систем, изложенных в главе 7, перечислим основные выводы, сделанные на основании этих результатов.

- Впервые установлено образование обменных катионов Ga³⁺ в восстановленном Ga-ZSM-5 в результате диспропорционирования низковалентных катионов Ga⁺ на катионы Ga³⁺ и Ga⁰. В условиях сверхвысокого вакуума Ga³⁺ и Ga⁰ стабильны как при комнатной, так и при высоких температурах. Диспропорционирование катионов Ga⁺ обратимо, и при нагревании в водороде Ga³⁺ и Ga⁰ рекомбинируют с образованием Ga⁺. В условиях среднего вакуума в восстановленном Ga-ZSM-5 галлий в форме обменных катионов Ga³⁺ в высоких концентрациях существует только при высоких температурах.
- Установлено, что в восстановленном галлийсодержащем мордените, а также в нанесенных на кислотные носители $(Al_2O_3,$ TiO_2) в высокой галлийоксидных системах концентрации образуются стабильные поверхностные катионы Ga³⁺. Установлено, что эта катионы диссоциативно адсорбируют водород с образованием поверхностных гидридов галлия Ga³⁺-H⁻ и гидроксильных групп.

Совокупность полученных результатов позволяет сделать вывод о том, что дегидрирования активными центрами алканов В галлийсодержащих катализаторах Ga-ZSM-5, вероятнее всего, являются поверхностные катионы Ga³⁺. Такой вывод следует из впервые установленного в настоящей работе существования обменных катионов Ga³⁺ в восстановленном Ga-ZSM-5, образующихся в результате диспропорционирования катионов Ga⁺ на нульвалентный галлий и катионы Ga³⁺, а также из литературных данных и данных настоящей работы о природе активных центров активации парафинов в каталитически-родственных системах Ga₂O₃, Al₂O₃ и Zn-ZSM-5. В этих системах центрами активации С-Н связей углеводородов и водорода являются льюисовские кислотные центры, ассоциированные с поверхностными катионами Ga^{3+} , Al^{3+} и Zn^{2+} .

Глава 8. Оптические свойства Ga-ZSM-5

Галлийсодержащие материалы находят все более широкое применение в различных областях электроники и оптоэлектроники благодаря их уникальным оптическим и электронно-оптическим свойствам. Все эти материалы являются неорганическими соединениями трехвалентного галлия: оксиды, халькогениды, нитриды. Физические и физико-химические свойства таких материалов, как индивидуальных, так и содержащих различные примеси, широко исследуются. В то же время, оптические свойства галлийсодержащих цеолитов мало исследованы. Между тем, цеолиты являются идеальной матрицей для

стабилизации катионов металлов в различных состояниях, а также наноразмерных частиц оксидов металлов.

В восьмой главе диссертации приведены результаты исследования оптических свойств галлийсодержащего ZSM-5.

В свежеприготовленном прокаленном Ga-ZSM-5 галлий, как известно, присутствует в форме частиц Ga_2O_3 , локализованных на внешней поверхности кристаллитов цеолита. Соответственно, УФ-Вид спектр поглощения Ga-ZSM-5, прокаленного в сухом воздухе и вакуумированного при комнатной температуре, по положению края полосы поглощения соответствует оксиду галлия, являющемуся широкозонным полупроводником (рис. 26 а).

Высокотемпературное вакуумирование образца приводит к существенным изменениям в спектре оптического поглощения Ga-ZSM-5. А именно, вместо одной полосы поглощения в УФ-Вид спектре восстановленного образца присутствуют две полосы (рис. 26 b). Такое раздвоение полосы поглощения является кажущимся и обусловлено интенсивной фотолюминесценцией, возбуждаемой УФ излучением, по частоте совпадающим с положением минимума между двумя пиками поглощения. Действительно, как видно из рисунка 27 a, Ga-ZSM-5, вакуумированный при 823 K, демонстрирует УФ представленную одиночным 393 люминесценцию, пиком при HM И возбуждаемую излучением с частотой 243 нм, что совпадает с положением минимума между пиками поглощения в УФ-Вид спектре образца. Появление фотолюминесценции в УФ области у Ga-ZSM-5, вакуумированного при 823 К, связано с обогащением кислородными вакансиями частиц Ga₂O₃, в результате высокотемпературного вакуумирования исходного свежепрокаленного образца.

Рис. 26. УФ-Вид спектры диффузного отражения Ga-ZSM-5: (а) свежепрокаленный в токе сухого воздуха при 823 К в течение 2 часов и вакуумированный при комнатной температуре; (b) вакуумированный при 823 К в течение 2 часов; (c) восстановленный в водороде при 823 К в течение 2 часов и вакуумированный при 823 К 1 час.

В литературе фотолюминесценция Ga₂O₃ в УФ области объясняется излучательной релаксацией электронного возбуждения с низших

энергетических уровней кислородных вакансий на потолок валентной зоны полупроводника.

Восстановление Ga-ZSM-5 в водороде приводит к появлению новых свойств материала. фотолюминесцентных А именно, восстановленный Ga-ZSM-5 демонстрирует интенсивную фотолюминесценцию при 356 нм, возбуждаемую УФ излучением длиной волны 220 HM (рис. 27 b). Интенсивность такой фотолюминесценции оказывается на порядок выше, чем интенсивность фотолюминесценции Ga-ZSM-5, вакуумированного при 823 К. Так как в восстановленном Ga-ZSM-5 галлий присутствует, в основном, в форме обменных катионов Ga⁺, то очевидно, что за фотолюминесцентные Ga^+ . свойства образца отвечают центры Поглошение VΦ света восстановленным Ga-ZSM-5, вероятнее всего, происходит благодаря синглетвозбуждения, которые подобны синглетным переходам по энергии аналогичным первым переходам возбуждения ${}^{1}\Pi \leftarrow {}^{1}\Sigma$ в GaX (X- атом галогена) или GaOH. Последующая эмиссия, как было установлено, происходит с триплетного возбужденного состояния (переход из синглетного возбужденного происходит вследствие интеркомбинационной состояния В триплетное конверсии). Тот факт, что кривая затухания фотолюминесценции (рис. 27 b аппроксимирована вставка) может быть одной экспонентой, может свидетельствовать об однородности центров Ga⁺.

Высокоинтенсивная фотолюминесценция катионных центров Ga⁺ в Ga-ZSM-5 наблюдалась впервые.

Рис. 27. Спектры эмиссии и возбуждения (а) Ga-ZSM-5, вакуумированного при 823 К и (б) Ga-ZSM-5, восстановленного в водороде при 823 К. Вставка в (b) показывает кривую затухания интенсивности фотолюминесценции восстановленного Ga-ZSM-5.

Полученные результаты могут представлять интерес с точки зрения различных применений фотолюминесцентных свойств соединений,

содержащих катионов одновалентного галлия. Ввиду доступности всех катионов Ga⁺ для молекул, способных проникнуть в каналы цеолита ZSM-5, представляет интерес исследование фотокаталитических свойств восстановленного Ga-ZSM-5. Высокая интенсивность УФ фотолюминесценции Ga-ZSM-5, обусловленная высоким квантовым выходом, может представлять значительный интерес для более эффективного использования ультрафиолетовой части солнечного света В оптических поглотителях (солнечные батареи) и оптических излучателях.

Заключение

B заключении дан краткий обзор результатов, представленных в диссертации. Подчеркивается, что цеолиты, исследованные в работе, являются каталитическими системами, обладающими высокой эффективностью в разных промышленно важных каталитических реакциях. В результате проведенных исследований удалось установить природу катионных структур в цинк-, кадмий- и галлийсодержащих цеолитах ZSM-5, а также объяснить природу каталитической активности этих цеолитов в реакции дегидрирования алканов. Исследование медь- и никельсодержащих цеолитов ZSM-5, являющихся высокоэффективными системами В селективном каталитическом восстановлении окислов азота и каталитическом разложения окиси азота NO, необычные адсорбционные свойства. позволило обнаружить их новые Исследованы оптические свойства галлийсодержащего цеолита ZSM-5 и впервые обнаружена интенсивная фотолюминесценция восстановленного Ga-ZSM-5, Уникальность обнаруженных в работе свойств обменных катионов в ZSM-5 обусловлена способностью цеолита стабилизировать обменные катионы многовалентных металлов как в необычных конфигурациях, обеспечивающих их высокую электрофильность, так и в нетипичном низковалентном состоянии.

Выводы

1. Впервые установлено, что в цеолитах с высоким отношением Si/Al в каркасе (ZSM-5), содержащих обменные многовалентных катионы (двух И трехвалентных) металлов, существуют изолированные катионы, компенсирующие отрицательные заряды удаленных друг от друга в каркасе цеолита алюминий-кислородных тетраэдров. Сделан вывод, что такие катионы в цинк-, кадмий- и галлийсодержащих цеолитах ZSM-5 являются активными центрами в каталитическом дегидрировании алканов.

2. Впервые показано, что в цинксодержащих ZSM-5 присутствуют два типа изолированных обменных катионов Zn²⁺. Катионы Zn²⁺ первого типа компенсируют отрицательные заряды близкорасположенных алюминийтетраэдров каркаса цеолита. Катионы кислородных второго типа. компенсируют отрицательные заряды удаленных друг от друга в каркасе цеолита алюминий-кислородных тетраэдров. Катионы второго типа сильнее возмущают адсорбированные молекулы водорода, чем катионы первого типа.

3. Обнаружено, что катионы Zn^{2+} в Zn-ZSM-5, наиболее сильно возмущающие молекулы водорода при его низкотемпературной адсорбции, диссоциативно адсорбируют водород при комнатной и повышенных температурах с образование поверхностных катионов гидрида цинка и кислотных гидроксильных групп. Эти же катионы Zn^{2+} диссоциативно адсорбируют метан с образованием катионов метила цинка и кислотных гидроксильных групп.

4. Исследована природа катионных центров в кадмийсодержащем ZSM-5. Впервые установлено, что в зависимости от способа приготовления и условий обработки в Cd-ZSM-5 могут присутствовать следующие типы катионных центров: обменные катионы одновалентного кадмия, образующие пары Cd_2^{2+} ; оксокатионы кадмия $[Cd_2O_x]^{2+}$; два типа изолированных обменных катионов Cd^{2+} .

Изолированные катионы Cd²⁺, характеризующиеся наиболее низкочастотной полосой поглощения в ИК спектре водорода, адсорбированного при 77 К, при комнатной температуре адсорбируют водород диссоциативно с образованием катионов гидрида кадмия и кислотных гидроксильных групп.

 Ga^{3+} 5. Впервые обнаружено образование обменных катионов B галлийсодержащем цеолите ZSM-5 В восстановленном результате диспропорционирования низковалентных обменных катионов Ga⁺ на Ga⁰ и обменные катионы Ga³⁺. Обменные катионы Ga³⁺ в восстановленном Ga-ZSM-5 стабильны только в условиях сверхвысокого вакуума.

Установлено, что в восстановленном галлийсодержащем мордените наряду с обменными катионами Ga⁺ в значительной концентрации присутствуют стабильные обменные катионы Ga³⁺.

6. Обнаружено, что обменные катионы Ga³⁺ в Ga-MOR и поверхностные катионы Ga³⁺ в нанесенных галлийоксидных системах диссоциативно адсорбируют водород с образованием стабильных поверхностных гидридов галлия.

7. Предложен механизм восстановления нанесенного оксида галлия до нульвалентного состояния в Ga-ZSM-5 и в нанесенных галлийоксидных

системах. Образование нульвалентного галлия происходит в результате диспропорционирования поверхностных катионов Ga⁺.

8. Впервые обнаружена интенсивная фотолюминесценция восстановленного Ga-ZSM-5 в ультрафиолетовой области спектра, центрами которой являются обменные катионы Ga⁺.

9. Обнаружена прочная форма адсорбции молекулярного водорода на катионах Cu^+ в Cu-ZSM-5 с сильно пониженной частотой H-H колебаний в адсорбированных молекулах H₂ (более чем на 1000 см⁻¹ по сравнению с частотой колебаний свободных молекул H₂). Прочные адсорбционные комплексы водорода с катионами Cu⁺ обнаружены как при низкой (77 K), так и при комнатной температурах.

Показана эффективность применения водорода в качестве молекулярного теста для обнаружения обменных катионов меди в Cu-ZSM-5 как в разных степенях окисления, так и в разных координациях.

10. Впервые ИК-спектроскопически обнаружена двухцентровая форма адсорбции молекул азота на паре катионов Cu^+ в Cu-ZSM-5. На основе анализа ИК спектров адсорбированного азота предложена модель двухцентровых адсорбционных комплексов азота, содержащих как терминальные молекулы азота, координационно связанные с одним катионом Cu^+ , так и молекулы азота, связанные противоположными концами с двумя катионами Cu^+ .

11. Установлено, что обменные катионы Ni⁺ в Ni-ZSM-5 термически стабильны при умеренно высоких температурах.

Обнаружено, что катионы Ni^+ в Ni-ZSM-5 образуют адсорбционные комплексы с молекулами азота и водорода, в которых частоты валентных колебаний молекул N_2 и H_2 сильно понижены по сравнению с частотой колебаний свободных молекул N_2 и H_2 .

12. На примере цинк- и никельсодержащего цеолита У впервые установлено, что в процессе дегидратации цеолитов, содержащих гидратированные $Me^{2+}(H_2O)_n$, переходных металлов образуются обменные катионы наноразмерные частицы оксида металла и кислотные гидроксильные группы. При высокотемпературном взаимодействии частиц оксида металла С кислотными гидроксильными группами формируются обменные катионные центры Me^{2+} .

Список цитируемой литературы:

[1] V. B. Kazansky, L. M. Kustov, and A. Y. Khodakov. On the nature of active sites for dehydrogenation of saturated hydrocarbons in HZSM-5 zeolites modified by zinc and gallium oxides. *Stud. Surf. Sci. Catal.*, 49 (1989) 1173-1182.

Основное содержание диссертации опубликовано в следующих работах:

Статьи в рецензируемых журналах

1. V.B. Kazansky, V.Yu. Borovkov, A.I. Serykh, R.A. van Santen, P.J. Strobbelaar. On the role of zinc oxide nanometric clusters in preparation of ZnNaY zeolite by ion exchange. *Phys. Chem. Chem. Phys.*, 1 (1999) 2881-2886.

2. А.И. Серых, Н.А. Соколова, В.Ю. Боровков, В.Б. Казанский. Изучение состояния никеля в ионообменном цеолите NiNaY методом ИК спектроскопии с использованием низкотемпературной адсорбции молекулярного водорода. *Кинетика и Катализ*, 41 (2000) 688-695.

3. V.B. Kazansky, V.Yu. Borovkov, A.I. Serikh, R.A. Van Santen, B.G. Anderson. Nature of the sites of dissociative adsorption of dihydrogen and light paraffins in ZnHZSM-5 zeolite prepared by incipient wetness impregnation. *Catal. Lett.*, 66 (2000) 39-47.

4. V.B. Kazansky, A.I. Serykh, B.G. Anderson, R.A. van Santen. The sites of molecular and dissociative hydrogen adsorption in high-silica zeolites modified with zinc ions. III DRIFT study of H_2 adsorption by the zeolites with different zinc content and Si/Al ratios in the framework. *Catal. Lett.*, 88 (2003) 211-217.

5. V. Kazansky, A. Serykh. A new charge alternating model of localization of bivalent cations in high silica zeolites with distantly placed aluminum atoms in the framework. *Microporous Mesoporous Mater.*, 70 (2004) 151-154.

6. V.B. Kazansky, A.I. Serykh, E.A. Pidko. DRIFT study of molecular and dissociative adsorption of light paraffins by HZSM-5 zeolite modified with zinc ions: methane adsorption. *J. Catal.*, 225 (2004) 369-373.

7. V.B. Kazansky, A.I. Serykh. Unusual localization of zinc cations in MFI zeolites modified by different ways of preparation. *Phys. Chem. Chem. Phys.*, 6 (2004) 3760-3764.

8. A.I. Serykh, V.B. Kazansky. Unusually strong adsorption of molecular hydrogen on Cu⁺ sites in copper-modified ZSM-5. *Phys. Chem. Chem. Phys.*, 6 (2004) 5250-5255.

9. V.B. Kazansky, A.I. Serykh. Unusual forms of molecular hydrogen adsorption by Cu^{+1} ions in the copper-modified ZSM-5 zeolite. *Catal. Lett.*, 98 (2004) 77-79.

10. A.I. Serykh. Nature of cadmium cationic sites in cadmium-modified ZSM-5 zeolite according to the DRIFT studies of molecular hydrogen adsorption. *Microporous Mesoporous Mater.*, 80 (2005) 321-326.

11. A.I. Serykh, M.D. Amiridis. DRIFTS evidence for the formation of binuclear Cu(I)-dinitrogen complexes upon adsorption of N_2 on CuZSM-5. *Microporous Mesoporous Mater.*, 94 (2006) 320-324.

12. A.I. Serykh, M.D. Amiridis. Formation and thermal stability of Ni⁺ cationic sites in Ni-ZSM-5. *J. Phys. Chem. C*, 111 (2007) 17020-17024.

13. A.I. Serykh, M.D. Amiridis. In situ X-ray photoelectron spectroscopy study of gallium-modified MFI zeolite. *Surf. Sci.*, 603 (2009) 2037-2041.

14. A.I. Serykh, M.D. Amiridis. In-situ X-ray photoelectron spectroscopy study of supported gallium oxide. *Surf. Sci.*, 604 (2010) 1002-1005.

15. A.I. Serykh, S.P. Kolesnikov. On the nature of gallium species in galliummodified mordenite and MFI zeolites. A comparative DRIFT study of carbon monoxide adsorption and hydrogen dissociation. *Phys. Chem. Chem. Phys.*, 13 (2011) 6892-6900.

16. A.I. Serykh. On the formation of surface gallium hydride species in supported gallium catalysts. *Appl. Surf. Sci.*, 259 (2012) 252–255.

17. A.I. Serykh. On photoluminescence properties of gallium-exchanged ZSM-5 zeolite. *Chem. Phys. Lett.*, 554 (2012) 159–162.

Тезисы докладов

1. V.B. Kazansky, A.I. Serykh. New charge alternating model of localization of bivalent cations in high silica zeolites with very high Si/Al ratio in the framework. 13th International Congress on Catalysis, Paris. 11-16 June 2004.

2. V.B. Kazansky, E.A. Pidko, A.I. Serykh. Unusually high intensities of IR stretching bands as a criterion of chemical activation of light paraffins by zinc Lewis sites in ZSM-5 zeolites. 13th International Congress on Catalysis, Paris 11-16 June 2004.

3. A.I. Serykh. Nature of cadmium cationic sites in cadmium-modified ZSM-5 according to DRIFT studies of low-temperature molecular hydrogen adsorption. 13th International Congress on Catalysis, Paris 11-16 June 2004.

4. A.I. Serykh, M.D. Amiridis. Formation and thermal stability of Ni⁺ cations in Ni-ZSM-5. Testing by DRIFTS of adsorbed N₂, H₂, D₂ and EPR spectroscopy, 20^{th} North American Catalysis Society Meeting. June 17-22, 2007 Houston, Texas. Abstract P-S2-34B.

5. A.I. Serykh, F. Patcas, M. Amiridis. New spectroscopic evidence for the formation of Ga-H hydrides in supported gallium oxide catalysts. 2007 Annual AIChe meeting. November 4-9. Salt Lake City, Uta. Abstract 509ak

6. A.I. Serykh, M. D. Amiridis. On the nature of catalytically active sites in GaMFI. High temperature XPS study and DFT modeling. 21th North American Catalysis Society Meeting, June 7-12, 2009 San Francisco, California. Abstract P-W-51. 7. A.I. Serykh, S.P. Kolesnikov. On the formation of Ga^{3+} in Ga-MOR and Ga-MFI. DRIFT study of carbon monoxide adsorption and hydrogen dissociation. EuropaCat X, 28 August - 2 September 2011, Glasgow, Scotland. Abstract PTh9-1700655.