ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ ОРГАНИЧЕСКОЙ ХИМИИ им. Н. Д. ЗЕЛИНСКОГО РОССИЙСКОЙ АКАДЕМИИ НАУК

На правах рукописи

НАСЫБУЛЛИН РУСЛАН ФЕДОРОВИЧ

ЭЛЕКТРОХИМИЧЕСКИ ИНИЦИИРУЕМЫЕ КАСКАДНЫЕ И МУЛЬТИКОМПОНЕНТНЫЕ РЕАКЦИИ АЛЬДЕГИДОВ И С-Н КИСЛОТ

02.00.03 - Органическая химия

Диссертация на соискание ученой степени кандидата химических наук

> Научный руководитель: Проф., д.х.н., ведущий научный сотрудник ЭЛИНСОН МИХАИЛ НИКОЛАЕВИЧ

Москва – 2014

Оглавление

Введение
Глава 1. Каскадные и мультикомпонентные реакции альдегидов и С-Н
кислот
(Литературный обзор)8
1.1 Реакции инициированные электрогенерированным основанием
1.1.1 Реакции в диафрагменном электролизере 10
1.1.2 Реакции с использованием растворимого анода 13
1.1.3 Реакции в бездиафрагменном электролизере 14
1.2 Каскадные и мультикомпонентные реакции альдегидов и С-Н
кислот в классическом органическом синтезе
1.2.1 Каскадные реакции бензальдегидов, катализируемые основанием 25
1.2.2 Каскадные реакции бензальдегидов, катализируемые другими типами
катализаторов
1.2.3 Мультикомпонентные реакции бензальдегидов, катализируемые
основанием
1.2.4 Мультикомпонентные реакции бензальдегидов, катализируемые
другими типами катализаторов 31
1.2.5 Каскадные и мультикомпонентные реакции салициловых альдегидов,
катализируемые основанием
1.2.6 Каскадные и мультикомпонентные реакции салициловых альдегидов,
катализируемые другими типами катализаторов
Заключение
Глава 2. Электрохимически инициированные каскадные и
мультикомпонентные реакции альдегидов и С-Н кислот
(Обсуждение результатов) 42
2.1 Электрохимически инициированные каскадные и
мультикомпонентные реакции салициловых альдегидов и С-Н кислот

2.1.1 Электрокаталитическая трансформация каскадная салициловых 2.1.2 Электрокаталитическая трансформация каскадная салициловых альдегидов и циануксусных эфиров в 2-амино-4*H*-хромен-3-карбоксилаты. 51 2.1.3 Электрокаталитическая мультикомпонентная трансформация салициловых альдегидов, малононитрила и триэтилфосфита в (2-амино-4*H*-2.2 Электрохимически инициированные каскадные И мультикомпонентные реакции бензальдегидов и С-Н кислот 2.2.1 Электрокаталитическая каскадная трансформация бензальдегидов и 3-метил-1-фенил-2-пиразолин-5-она в замещенные 4,4'-(арилметилен)бис(1H-2.2.2 Электрокаталитическая мультикомпонентная трансформация бензальдегидов, 3-метил-2-пиразолин-5-онов и С-Н кислот в 3-(5-гидрокси-3метилпиразол-4-ил)-3-арилпропионитрилы...... 68 2.2.3 Электрокаталитическая мультикомпонентная трансформация бензальдегидов, малононитрила и циклических 1,3-дикетонов в замещенные 5,6,7,8-тетрагидро-4*H*-хромены......77 2.2.4 Электрокаталитическая мультикомпонентная трансформация ароматических альдегидов, малононитрила и 4-гидрокси-6-метил-2-пирона в 2.2.5 Электрокаталитическая мультикомпонентная трансформация ароматических альдегидов, 1-метил-4-гидроксихинолин-2-она и С-Н кислот в 3.1 Электрохимически инициированные каскадные И мультикомпонентные реакции салициловых альдегидов и С-Н кислот 3.1.1 Электрокаталитическая трансформация каскадная салициловых

3.2 Электрохимически инициированные каскадные и мультикомпонентные реакции бензальдегидов и С-Н кислот

3.2.1 Электрокаталитическая каскадная трансформация бензальдегидов и 3-метил-1-фенил-2-пиразолин-5-она в замещенные 4,4'-(арилметилен)бис(1*H*-3.2.2 Электрокаталитическая мультикомпонентная трансформация бензальдегидов, 3-метил-2-пиразолин-5-онов и С-Н кислот в 3-(5-гидрокси-3метилпиразол-4-ил)-3-арилпропионитрилы...... 109 3.2.3 Электрокаталитическая мультикомпонентная трансформация бензальдегидов, малононитрила и циклических 1,3-дикетонов в замещенные 5,6,7,8-тетрагидро-4*H*-хромены......116 3.2.4 Электрокаталитическая мультикомпонентная трансформация ароматических альдегидов, малононитрила и 4-гидрокси-6-метил-2-пирона в пирано[4,3-*b*]пираны......119 3.2.5 Электрокаталитическая мультикомпонентная трансформация ароматических альдегидов, 1-метил-4-гидроксихинолин-2-она и С-Н кислот в пирано[3,2-*с*]хинолоны......121 Выводы......126 Список литературы 128

Введение

Электрохимический синтез органических соединений прочно занял свое место в ряду современных экологически безопасных, технологичных и ресурсосберегающих методов органического синтеза. Роль органического электросинтеза, принимая во внимание его преимущества перед химическими синтезами с точки зрения экологии, в будущем должна возрасти в еще большей степени.

Одним ИЗ наиболее интенсивно развивающихся современных направлений органического электросинтеза являются электрохимически инициированные каскадные и мультикомпонентные реакции. Это новое перспективное направление исследований, которое в последние годы привлекает все больший интерес как электрохимиков, так и химиковоргаников. Отличительная особенность электрохимически инициированных реакций заключается в том, что электрохимическая стадия генерирует частицы, которые катализируют последующую реакцию. При этом выход по току конечного соединения значительно превышает 100%, достигая сотен и Учитывая, важнейшим тысяч процентов. ЧТО параметром электрохимического процесса является количество электричества, потребляемого при образовании целевого соединения, данный ВИЛ превращений представляет наибольший интерес для практики, прежде всего, с точки зрения экономии энергозатрат.

Различные превращения С-Н кислот являются важным разделом в арсенале средств современной синтетической органической химии. Так, анионы С-Н кислот конденсируются с карбонильными соединениями с образованием активированных олефинов – прекурсоров природных и биологически активных соединений. Преимущества электрохимической генерации анионов СН-кислот связаны с отсутствием необходимости использования химических депротонирующих средств. Кроме того,

5

пропускание каталитического количества электричества сводит к минимуму нежелательные процессы прямого восстановления/окисления на электродах.

Данная диссертационная работа посвящена электрохимически инициированным каскадным и мультикомпонентным реакциям альдегидов и С-Н кислот.

Диссертационная работа состоит из трех глав:

- литературного обзора, в котором проведена систематизация данных как по электрохимически инициированным реакциям, так и по каскадным и мультикомпонентным реакциям альдегидов и С-Н кислот с использованием методов классической органической химии.
- обсуждения полученных результатов, в котором детально описаны проведенные исследования по электрохимически инициированным трансформациям альдегидов и С-Н кислот.
- 3. экспериментальной части.

Новизна работы заключается в предложении и осуществлении процесса электрокаталитического проведения каскадных и мультикомпонентных реакций альдегидов и С-Н кислот в бездиафрагменном электролизере, в нейтральной среде и мягких условиях. Проведено систематическое исследование электрохимического инициирования каскадных и мультикомпонентных реакций альдегидов и С-Н кислот в спиртах, с использованием бромида натрия в качестве электролита в бездиафрагменном электролизере в широком интервале температур.

Практическая значимость проведенных исследований заключается в разработке принципиально нового электрокаталитического метода получения из простых соединений – альдегидов и С-Н кислот би- и трициклических гетероциклических систем, активно взаимодействующих с биологическими рецепторами, проявляющих фармакологические свойства и широко известных как "privileged medicinal scaffolds".

Степень достоверности обеспечивается тем, что экспериментальные работы И спектральные исследования синтезированных соединений сертифицированном выполнены на современном оборудовании, обеспечивающем получение надежных данных. Состав И структура соединений. обсуждаемых в диссертационной работе, подтверждены данными ЯМР ¹H, ¹³C, ³¹P, а также ИК-спектроскопии и масс-спектрометрии (в том числе высокого разрешения). Использованы современные системы сбора и обработки научно-технической информации: электронные базы данных Reaxys (Elsevier), SciFinder (Chemical Abstracts Service) и Web of Science (Thomson Reuters), а также полные тексты статей и книг.

Личный склад соискателя состоит в поиске, анализе и обобщении научной информации по каскадным и мультикомпонентным реакциям альдегидов и С-Н кислот, инициирование которых осуществляется как с помощью электрохимических методов, так и с помощью методов классической органической химии. Соискатель самостоятельно выполнял описанные в диссертации химические и электрохимические эксперименты, а также самостоятельно выделял и очищал конечные соединения. Диссертант участвовал в установлении строения полученных соединений с помощью физико-химических и спектральных методов анализа, обрабатывал и интерпретировал полученные результаты (физико-химические исследования выполнены в результате совместных исследований с сотрудниками ФГБУН ИОХ РАН в Лаборатории микроанализа и электрохимических исследований №9, и в Лаборатории ядерного магнитного резонанса №30). Соискатель также осуществлял апробацию работ на конференциях и выполнял подготовку публикаций по выполненным исследованиям.

7

Глава 1. Каскадные и мультикомпонентные реакции альдегидов и С-Н кислот

(литературный обзор)

Создание новых синтетических методологий, позволяющих с меньшими затратами и быстрее синтезировать целевые соединения, важная задача современной органической, медицинской и комбинаторной химии.

Одним из наиболее эффективных методов решения этой задачи является разработка каскадных и мультикомпонентных реакций с участием и С-Н кислот. Преимуществом этого подхода является альдегидов последовательное образование нескольких связей и усложнение структуры соединения в "one-pot" трансформации. Все большее значение в современной органической химии каскадные И мультикомпонентные реакции приобретают большей эффективности не только из-за И меньшей трудоемкости, но и вследствие возрастающего значения экологически безопасных и ресурсосберегающих методов органического синтеза. За счет минимизации отходов, уменьшения количества требуемых растворителей, реагентов и сокращения числа стадий обеспечивается экономичность и экологичность реакций этого типа.

Согласно CRC библиотеке соединений [1], 90% природных карбоциклический индивидуальных молекул содержат или гетероциклический фрагмент. Таким образом, реакции, начинающиеся с образования новой С-С связи и заканчивающиеся построением сложных битрициклических систем, имеют важное значение В современной И органической и биоорганической химии [1].

Настоящий обзор посвящен систематизации и обобщению каскадных и мультикомпонентных реакций альдегидов и С-Н кислот с использованием

8

как электрохимических методов, так и методов классической органической химии.

1.1 Реакции инициированные электрогенерированным основанием

Разработка процессов электрохимической генерации анионов вывела электросинтез в разряд конкурентоспособных методов органической химии. Электрохимические методы позволяют в мягких условиях генерировать широкий круг различных анионов. Преимущества электрохимической генерации анионов С-Н кислот связаны с отсутствием необходимости использования больших количеств химических депротонирующих веществ [2].

Электрохимическая генерация оснований была эффективно использована для промотирования многих синтетически значимых реакций, таких как алкилирование, реакция Виттига-Хорнера, присоединение по Михаэлю, и др [3]. В ряде случаев применение электрогенерированных оснований позволяет осуществить целенаправленные электрокаталитические селективные трансформации органических соединений, которые невозможно осуществить методами классической органической химии [3].

В данном разделе литературного обзора рассмотрены реакции как в диафрагменном, так и в бездиафрагменном электролизере, а также реакции с использованием растворимого анода.

1.1.1. Реакции в диафрагменном электролизере.

Реакциям в диафрагменном электролизере присущ ряд ограничений, имеющих как технологическую, химическую природу. так И Технологические ограничения связаны co сложностью аппаратного оформления, особенно в случае использования контролируемого потенциала, и относительно низкой производительностью из-за использования малой плотности тока. Химические ограничения связаны с изменением рН реакционной среды, так как в катодной области происходит подщелачивание, а в анодной области – подкисление раствора, что вызывает нежелательные побочные процессы в соединениях, чувствительных к кислотам или шелочам. Еще ОДНИМ недостатком использования электролизера с диафрагмой является такое явление как электроосмос.

В 1999 году впервые инициирование мультикомпонентной реакции ароматических альдегидов и двух различных С-Н кислот было проведено в электролизере с диафрагмой. Реакция осуществлялась в катодной части диафрагменного электролизера, снабженного Pt-катодом, в режиме постоянного тока (плотность тока 1 мА/см²). Замещенные 4-арил-2-амино-4*H*-пираны **1** были получены с выходами 75-88% по веществу и 700-1300% по току (время электролиза составило 2-4 ч) (Схема 1) [4].

Схема 1

В качестве инициатора в этом процессе, по мнению авторов, выступает электрогенерированный на катоде супероксид, отрывающий протон от

малононитрила. Дальнейшая реакция в растворе представляет собой тандемную реакцию Кневенагеля-Михаэля с последующей внутримолекулярной циклизацией аддукта и его конечным превращением в 4-арил-2-амино-4*H*-пиран **1** (Схема 2).

Схема 2

Позднее в аналогичных условиях была осуществлена мультикомпонентная трансформация 4-замещенных пиперидин-4-онов, малононитрила и пиразол-5-онов. Трициклические соединения **2** были получены с выходом 79-90% по веществу и еще большим 1600-3000% выходом по току (Схема 3) (время электролиза составило 2-3 ч) [5, 6].

Схема 3

При взаимодействии в диафрагменном электролизере С-Н кислот и 2-цианобензальдегида были получены изоиндолиноны **3** с выходом 52-98% по веществу и 1300-2500% по току (плотность тока 15 мА/см², время электролиза достигало 21 ч) (Схема 4) [7]. Соединения **3** далее вводились в электрохимически инициированную реакцию Михаэля с эфирами акриловых кислот с образованием аддуктов **4** с выходами 66-95% по веществу и 1600-2400% по току (время электролиза 2-4 ч) (Схема 5). Также была осуществлена мультикомпонентная трансформация непосредственно С-Н кислот, 2-цианобензальдегида и эфиров акриловых кислот в аддукты **4** с выходами 67-91% по веществу и 850-1100% по току. В последнем случае необходимо пропустить 0.08 F/моль электричества [7].

Схема 4

X, Z = CO_2Me , CO_2 -*t*-Bu, CO_2Bn , COMe

Схема 5

Реакции инициированные электрогенерированным основанием в электролизере с диафрагмой, практически эквивалентны химическим реакциям с использованием основания, так как в процессе электролиза происходит подщелачивание среды в катодном пространстве. Существенным недостатком метода является значительное время реакции. Также электролизеры с диафрагмой обычно имеют сложную конструкцию, что создает препятствия для использования этого метода.

1.1.2. Реакции с использованием растворимого анода

Данный тип электрохимических процессов проводится в бездиафрагменном электролизере в режиме постоянного тока и также сопровождается подщелачиванием реакционной среды, что вызывает нежелательные побочные процессы в соединениях, чувствительных к щелочам.

С использованием растворимого Mg-анода осуществлено взаимодействие ароматических альдегидов, малононитрила и димедона. Выход 2-амино-7,7-диметил-5-оксо-4-арил-5,6,7,8-тетрагидро-4*H*-хромен-3-карбонитрилов **5** составил 89-96% по веществу, но только 30% по току (время электролиза – 4-5 ч) (Схема 5) [8].

Схема 5

Трансформация этого типа реализована также при взаимодействии ароматических альдегидов, малононитрила и резорцина. 2-Амино-7-гидрокси-4-арил-4*H*-хромен-3-карбонитрилы **6** были получены с выходом 80-92% по веществу и 30% по току (плотность тока – 10 мА/см², время электролиза – 1,5 ч) (Схема 6) [9].

Схема 6

В заключение следует отметить, что использование растворимого анода при проведении электролиза в бездиафрагменной ячейке приводит к подщелачиванию реакционной среды. Кроме того, до настоящего времени общей характеристикой данных процессов являются низкий выход по току и длительное время реакции. Также значительно усложняется выделение конечных соединений в связи с образованием значительных количеств нерастворимых окисей металлов. Специальные процедуры по их удалению весьма невыгодны с коммерческой точки зрения.

1.1.3. Реакции в бездиафрагменном электролизере

В 90-х гг прошлого века в ИОХ РАН был обнаружен новый класс электрохимических процессов, инициирование которых осуществляется в электролизере без диафрагмы. Электролиз в бездиафрагменной ячейке позволяет проводить процессы за счет градиента основности в прикатодной области при электронейтральности системы в целом. Цепную реакцию инициируют электрохимически генерируемые на катоде алкоголят-анионы, которые выступают в качестве нуклеофила и регенерируются в ходе дальнейших химических превращений.

Первая обнаруженная реакция этого типа – циклизация 1,1,2,2тетрацианоциклопропанов 7 в бициклические пирролины 8 (Схема 7) [10-12]. Процесс был осуществлен в бездиафрагменном электролизере, в спиртах, при пропускании 0.05-0.1 F/моль электричества в режиме постоянного тока. Бициклические пирролины **8** были получены с выходами 71-95% по веществу и 700-1900% по току, а время электролиза составило всего 4-8 мин.

Схема 7

Электрокаталитический процесс начинается с образования на катоде алкоголят-аниона, который атакует углерод СN-группы. Дальнейшая циклизация, протонирование образующегося интермедиата, присоединение еще одного алкокси-аниона и последующее протонирование приводят к образованию пирролиновой системы. Регенерирующийся на заключительной стадии алкоголят-анион вступает в следующий каталитический цикл.

Схема 8

С помощью этого метода были получены разнообразные, в том числе бензаннелированные полициклические пирролины 9 с выходами 75-93% по веществу и 375-465% по току. При наличии заместителя в кольце реакция протекает стереоселективно, и выход соответствующих трициклических

соединений **10** составлял 51-89% по веществу и 255-455% по току. Время электролиза – 16 мин. (Схема 9) [13].

Схема 9

Из 2,2-дицианоциклоропан-1,1-дикарбоксилатов были синтезированы соответствующие пирролидоны **11** с выходами 78-95% по веществу и 390-475% по току (Схема 10). Время электролиза составило 16 мин. [14].

Схема 10

В последнее время интенсивно разрабатываются методы синтеза на основе электрохимически инициированных каскадных и мультикомпонентных реакций в бездиафрагменном электролизере с участием альдегидов и С-Н кислот. Первая работа в этой серии – выполнена

автором в ходе данного диссертационного исследования в 2006 году. Это электрокаталитическая трансформация замещенных салициловых альдегидов и малононитрила. 2-Амино-4*H*-хромены **12** получены с выходами 85-95% по веществу и 1700-1900% по току, время электролиза 15 мин. (Схема 11) [15].

Эта и последующие работы автора [15-23] подробно рассмотрены в Главе 2. "Обсуждение результатов" (Схема 12).

Открытие указанных выше трансформаций автором данной диссертации вызвало появление работ, посвященных взаимодействию карбонильных соединений и С-Н кислот. Так, под влиянием первых работ автора в ИОХ РАН в той же лаборатории была осуществлена электрокаталитическая мультикомпонентная конденсация салициловых альдегидов и двух различных С-Н кислот. Разнообразные 4*H*-хроменовые системы **13** были получены с выходами 65-90% по веществу и 320-1900% по току. Время электрокаталитического процесса составило 32 мин. при проведении электролиза в режиме постоянного тока (Схема 13) [24].

Схема 13

Следует отметить, что данная электрокаталитическая система различает используемые С-Н кислоты по их реакционной способности. Хроменовый цикл всегда формируется с участием более сильной С-Н кислоты, что обеспечивает высокую селективность мультикомпонентного процесса и получение соединений с определенным положением заместителей.

разработанный Позднее метод был успешно применен при электрокаталитическом взаимодействии ароматических альдегидов, *N*-алкил барбитуратов малононитрила. При этом были И получены пирано[2,3-*d*]пиримидиновые системы 14 с выходами 70-80% по веществу и 700-800% по току (Схема 14). Время электролиза 32 мин., плотность тока 5 мА/см² [25].

Схема 14

Обнаруженная автором данной диссертационной работы электрокаталитическая система была успешно использована при конденсации изатинов с двумя С-Н кислотами, одна из которых – малононитрил, а другая – циклический 1,3-дикетон, пиразолон, барбитуровая кислота или 4-гидроксихинолин-2(1H)-он. Таким образом были получены разнообразные спироциклические структуры: спиро(5,6,7,8-тетрагидро-4H-хромен-4,3'-оксиндолы) **15** (выход по веществу 83-98% и 800-1000% по току) [26], спиро(индол-3,4'-пирано[2,3-c]пиразолы) **16** (выход 78-99% по веществу и 1900-2500% по току) [27], спиро(индол-3,5'-пирано[2,3-d]пиримидины (выход по веществу 80-95% и 800-950% по току) **17** [28] и спиро(индол-3,4'-пирано[2,3-c]хинолины (выход по веществу 75-91% и 500-600% по току) **18** [29] (Схема 15). Время электролиза во всех случаях составляло 32-64 мин., плотность тока 2-10 мА/см².

Материал электродов во всех реакциях: Fe-катод, C(графит)-анод

Схема 15

Эти электрокаталитические процессы проходят по следующей схеме (Схема 16). На катоде депротонируется спирт с образованием алкоксианиона; реакция в растворе между алкокси-анионом и малононитрилом приводит к аниону малононитрила. Далее в растворе реализуется типичная мультикомпонентная реакция. При присоединении аниона малононитрила к изатину образуется продукт конденсации Кневенагеля. Присоединение по C-H Михаэлю аниона циклической кислоты И дальнейшая внутримолекулярная циклизация приводят к спироциклическим соединениям 15-18 с регенерацией алкокси-аниона на последней стадии. Этот алкоксианион начинает новый цикл цепного процесса, взаимодействую со следующей молекулой малононитрила.

Схема 16

Помимо работ российских исследователей появились работы, выполненные за рубежом, посвященные реакциям карбонильных соединений и С-Н кислот под действием электрогенерированного основания в бездиафрагменной ячейке, в условиях впервые предложенных автором данного исследования. Так например, в электрокаталитических условиях, разработанных автором данного исследования, в группе Вейси была осуществлена электрохимически инициированная конденсация карбонильных соединений и роданина, приводящая к 5-арилалкилиденроданинам **19** [30]. Процесс был реализован в бездиафрагменной ячейке в присутствии бромида натрия в качестве электролита. Время реакции 40-60 мин., выход аддуктов **19** составил 80-96% по веществу и 2000-2400% по току (плотность тока 4 мА/см²) (Схема 17).

Схема 17

Важно отметить, что в данном случае из статьи автора данной диссертационной работы [18] были заимствованы не только условия проведения реакции, но и многие речевые обороты и даже целые абзацы, а описание экспериментальной части совпадает дословно.

Недавно была осуществлена электрохимически инициированная каскадная реакция Кневенагеля-Михаэля альдегидов и тетроновых кислот, приводящая к метиленбистетроновым аддуктам **20**. Реакция проходит в течение 2-10 ч, выход аддуктов **20** 43-85% по веществу и 27-77% по току (плотность тока 2 мА/см²) [31]. Процесс проводится при 0 °C, а повышение температуры до комнатной приводит к образованию смеси целевого соединения **20** и сложных полициклических соединений (Схема 18).

Схема 18

Из ароматических альдегидов, малононитрила и фталгидразида при пропускании 0.15 F/моль электричества были получены 1*H*-пиразоло[1,2-*b*]фталазин-5,10-дионы **21**. Выход соединений **21** по веществу 85-98% и 330-650% по току (плотность тока 12 мА/см²), время электролиза составило 4 мин. (Схема 19) [32].

Аг = Рп, 2-О₂NC₆н₄, 3-О₂NC₆н₄, 4-О₂NC₆н₄, 2-MeOC₆H₄, 3-MeOC₆H₄, 2-CIC₆H₄, 4-CIC₆H₄, 4-BrC₆H₄, 3-пиридил, 1-нафтил

Схема 19

1.2 Каскадные и мультикомпонентные реакции альдегидов и С-Н кислот в классическом органическом синтезе

Взаимодействие альдегидов и С-Н кислот в классическом органическом синтезе является известной и перспективной областью, по которой ежегодно публикуются сотни работ. Высокий синтетический потенциал данного процесса с образованием связан, В первую очередь, новых реакционноспособных соединений. Так например, электронодефицитные олефины, образующиеся в результате конденсации Кневенагеля, являются эффективными акцепторами в реакции Михаэля. Сочетание двух или более превращений в каскадном или мультикомпонентном процессе позволяет получать достаточно сложные соединения в одну экспериментальную стадию, что представляет особый интерес с точки зрения синтетической органической химии. Кроме того, взаимодействие альдегидов и С-Н кислот часто приводит К образованию соединений c потенциальной фармакологической активностью и/или набором других полезных свойств.

В связи с тем, что эта область органической химии является весьма обширной, в обзоре данной диссертационной работы будут рассмотрены только типы реакций, которые осуществлены нами в электрокаталитическом варианте.

В данном разделе не рассматриваются реакции с использованием микроволнового излучения, так как эти процессы имеют свои особые характеристики.

24

1.2.1 Каскадные реакции бензальдегидов, катализируемые основанием

Каскадная реакция Кневенагеля-Михаэля с участием ароматических альдегидов и 3-метил-2-пиразолин-5-она с образованием замещенных 4,4'-(арилметилен)бис(1*H*-пиразол-5-олов) **22** интенсивно изучается в последнее десятилетие в связи с их потенциальной биологической активностью (Схема 20). К настоящему времени уже известно большое количество различных условий, подходящих для этого процесса [33-46]. В связи с этим, в литературном обзоре подробно рассмотрены только наиболее значимые методы для получения соединений **22**.

С использованием оснований данный процесс был реализован в нескольких вариантах [33-34].

В 2012 году в качестве катализатора был использован 2-гидроксиэтиламмоний ацетат (5 мольных %) [33]. Соединения 22 были получены с выходами 74-95%, время реакции составляло 1 ч, однако для получения чистых конечных соединений была необходима дополнительная перекристаллизация.

Схема 20

В 2013 году был применен твердофазный основный катализатор для каскадной реакции Кневенагеля-Михаэля бензальдегидов и 3-метил-1-фенил-2-пиразол-5-она (Схема 20) [34]. Время реакции до 2 ч, а выход 4,4'- (арилметилен)бис(1*H*-пиразол-5-олов) **22** составил 72-93%. В этом случае также использовалась дополнительная перекристаллизация конечных соединений. В обоих описанных случаях [33, 34] необходим сложный предварительный синтез катализаторов.

В 2013 году автором данной диссертационной работы была реализована каскадная реакция Кневенагеля-Михаэля бензальдегидов, 3-метил-2пиразолин-5-она и циано-функционализированных С-Н кислот (Схема 21) [47].

Процесс осуществлен в спиртах в присутствии ацетата натрия в качестве основания. Время реакции составляет 0.5-1.0 ч, 3-(5-гидроксипиразол-4-ил)-3-арилпропионитрилы **23** получены с выходами 83-99%. Данная работа подробно рассмотрена в Главе 2. "Обсуждение результатов".

1.2.2 Каскадные реакции бензальдегидов, катализируемые другими типами катализаторов

Каскадная реакция Кневенагеля-Михаэля бензальдегидов и 3-метил-1фенил-2-пиразолин-5-она приводит к образованию 4,4'-(арилметилен)бис(1*H*пиразол-5-олов) **22** и при использовании катализаторов других типов (Схема 22). Наиболее значимые работы представлены в Таблице 1 [35-37].

Схема 22

Таблица 1. Каскадная реакция Кневенагеля-Михаэля ароматических альдегидов и 3-метил-1-фенил-2-пиразол-5-она с образованием 4,4'-(арилметилен)бис(1*H*-пиразол-5-олов) **22**.

Катализатор	Растворитель	Время реакции	Выход, %	Ссылка
MoH ₄ O ₇ P	EtOH	3.5-5.5 ч	91-96	[35]
Лаурилсульфат натрия	H_2O	1-2 ч	78-92	[36]
[Py-SO ₃ H]Cl	_	0.3 ч	71-96	[37]

Недостатками данных процессов [35-36] являются длительное время реакции (до 5.5 ч), использование сложных катализаторов, а также необходимость перекристаллизации конечных соединений во всех случаях.

В 2013 году для получения соединений **22** в качестве катализатора был использован 1-сульфопиридиний хлорид [37]. 4,4'-(Арилметилен)бис(1*H*-пиразол-5-олы) получены с выходами 71-96%. Однако, в этом случае требуется предварительный синтез катализатора, а для замещенных бензальдегидов в большинстве случаев не достигается высокий выход (менее 80%).

Таким образом, большинство описанных в литературе методов синтеза соединений 22 этого типа имеют свои недостатки, связанные или с длительным временем проведения реакции, или жесткими условиями проведения процесса, а также дополнительными стадиями, необходимыми для очистки конечных соединений. Кроме того, во многих работах необходим сложный предварительный синтез катализатора.

1.2.3 Мультикомпонентные реакции бензальдегидов, катализируемые основанием

Первые работы по мультикомпонентной реакции бензальдегидов, димедона и малононитрила были сделаны в 2004 году с использованием солей аммония в качестве основания (Схема 23) [48-49]. Реакции были реализованы при нагревании в воде в течение 3-10 ч, выход замещенных 2амино-5-оксо-4-арил-5,6,7,8-тетрагидро-4*H*-хромен-3-карбонитрилов **5** составлял 59-95% [48], или 79-99% [49]. В обоих случаях для очистки конечных соединений была необходима дополнительная перекристаллизация из этанола.

Схема 23

Позднее для данной мультикомпонентной трансформации были использованы как органические, так и неорганические основные катализаторы (Таблица 2, Схема 23) [50-53].

 Таблица 2.
 Мультикомпонентная
 трансформация
 бензальдегидов,

 циклических 1,3-дикетонов и малононитрила под действием оснований.

Основный катализатор	Растворитель	Время реакции	Выход, %	Ссылка
NBu_4F	H_2O	0.5-6 ч	73-98	[50]
NH ₄ OAc	EtOH	0.5-1.5 ч	82-96	[51]
POPINO	H_2O	0.2-1 ч	87-96	[52]
SiO ₂ -DABCO	EtOH	0.5-4 ч	90-98	[53]

С использованием фторида тетрабутиламмония [50] или ацетата аммония [51] 2-амино-5-оксо-4-арил-5,6,7,8-тетрагидро-4*H*-хромен-3карбонитрилы **5** были получены с выходами 73-98% (Таблица 2). В обоих случаях необходима дополнительная перекристаллизация конечных соединений. Следует отметить, что в [51] использовался эквивалент (100 мольных %) NH₄OAc.

В качестве органических оснований для мультикомпонентной реакции бензальдегидов, циклических 1,3-дикетонов и малононитрила применялись фталимид *N*-оксил калия (POPINO) [52] и *н*-пропил-4-аза-1-азониябицикло[2.2.2]октан хлорид на SiO₂ (SiO₂-DABCO) (Таблица 2) [53]. Недостатками этих процессов являются длительный предварительный синтез катализатора и необходимость перекристаллизации для очистки конечных соединений.

Позднее, в 2010 году в качестве С-Н кислоты вместо циклических 1,3-дикетонов был использован 4-гидрокси-6-метил-2-пирон (Схема 24). Для мультикомпонентной реакции ароматических альдегидов, 4-гидрокси-6-метил-2-пирона и малононитрила в качестве основания был применен 1,8-диазобицикло[5.4.0]ундец-7-ен (DBU) (Схема 24) [54].

Схема 24

Процесс проводился при кипячении в воде в течение 10-20 мин. Выход пирано[4,3-*b*]пиранов **24** составлял 86-90%. Недостатком данного метода является использование дорогостоящего катализатора (10 мольных %), а

также недостаточное количество примеров; кроме того описано получение лишь трех соединений **24** [54].

Мультикомпонентная реакция альдегидов, 4-гидрокси-1-хинолин-2-онов и циано-функционализированных С-Н кислот в присутствии оснований была реализована в нескольких вариантах (Таблица 3, Схема 25) [55-57].

В 2004 году с использованием KF-Al₂O₃ в качестве основного катализатора пирано[3,2-*c*]хинолоны **25** были получены с выходами 78-92% (Схема 25) [55]. Недостатком данного процесса является длительное кипячение (3-5 ч) в среде этанола, а также необходимая для очистки дополнительная перекристаллизация конечных соединений **25**.

Таблица 3. Мультикомпонентная реакция альдегидов, 4-гидроксихинолин-2она и малононитрила под действием оснований.

Основный катализатор	Растворитель	Время реакции	Выход, %	Ссылка
KF-Al ₂ O ₃	EtOH	3-5 ч	78-92	[55]
NEt ₃	EtOH	50 мин.	64-95	[56]
NH ₄ OAc	EtOH	3-20 мин.	80-95	[57]

В 2008 году для мультикомпонентной реакции альдегидов, 4-гидроксихинолин-2-она и малононитрила был применен триэтиламин (Схема 25) [56]. Процесс проводился при кипячении в этаноле в течение 50 мин., выход соединений **25** составлял 64-95%. В этом случае также необходима перекристаллизация конечных соединений.

Недавно для получения пирано[3,2-*c*]хинолонов **25** был использован ацетат аммония в качестве основания при кипячении в EtOH в течение 3-20 мин. [57]. Выход **25** составлял 80-95%. В этом процессе для очистки конечных соединений также необходима перекристаллизация. Следует отметить, что во всех случаях [55-57] использовались большие количества основных катализаторов: 80 мольных % [55], 450 мольных % [56] и 20 мольных % [57].

1.2.4 Мультикомпонентные реакции бензальдегидов, катализируемые другими типами катализаторов

В последние годы для мультикомпонентной реакции ароматических альдегидов, циклических 1,3-дикетонов и малононитрила кроме основных, применяются также катализаторы различных типов (Таблица 4, Схема 26) [58-60].

Схема 26

Известные методы получения 2-амино-5-оксо-4-арил-5,6,7,8-тетрагидро-4*H*-хромен-3-карбонитрилов **5** с использованием не основных катализаторов подразделяются на несколько групп (Схема 26). К первой группе относятся реакции с использованием наноразмерных катализаторов, осуществленные в 2011 году [58-59]. С использованием наноструктурированного SiO₂-H₂SO₄ [58] или наночастиц кремния [59] 2-амино-5,6,7,8-тетрагидро-4*H*-хромены **5** были получены с выходами 80-98%, время реакции составляло 10-30 мин. Недостатком данного подхода является сложный предварительный синтез наноструктурированного катализатора. Кроме того, в обоих случаях необходима дополнительная очистка конечных соединений.

Также в 2011 году для этого мультикомпонентного процесса была применена липаза из свиной поджелудочной железы в качестве энзиматического катализатора (Схема 26) [60]. Суспензию исходных соединений перемешивали при 35 °C и 160 об/мин. в течение часа. Затем для выделения конечных соединений **5** реакционную смесь дополнительно выдерживали при –8 °C в течение суток. Выход 2-амино-5,6,7,8-тетрагидро-4*H*-хроменов **5** составлял 89-97%.

Таблица 4. Мультикомпонентная трансформация бензальдегидов, циклических 1,3-дикетонов и малононитрила.

Катализатор	Растворитель	Время реакции	Выход, %	Ссылка
Нано SiO ₂ -H ₂ SO ₄	EtOH	10 мин.	80-96	[58]
Si наночастицы	EtOH	25-30 мин.	86-98	[59]
Липаза	EtOH-H ₂ O	1ч	89-97	[60]

1.2.5 Каскадные и мультикомпонентные реакции салициловых альдегидов, катализируемые основанием

Взаимодействие салицилового альдегида и двух эквивалентов малононитрила под действием основания было осуществлено в нескольких вариантах (Таблица 4, Схема 28) [61-64].

Первый каскадный синтез 2-амино-4*H*-хроменовых систем **12** был осуществлен в 1984 году с применением основного оксида алюминия в качестве катализатора (Схема 28). Время реакции 30 мин., однако выходы конечных соединений составляли только 64-68% (лишь в одном случае при использовании ванилина выход **12** – 84%) [61].

В 2008 году в качестве основания были использованы гидрокарбонат натрия или триэтиламин, однако при этом в ряде случаев продолжительность реакции составляла 11 ч [62]. Хороший выход (91%) 2-амино-4*H*-хромена **12** был достигнут лишь в случае салицилового альдегида. При использовании замещенных салициловых альдегидов выход 2-амино-4*H*-хроменов **12** не превышал 75%. Также следует отметить, что в [61, 62] были использованы большие количества катализаторов: 150 мольных % [61] и 50-60 мольных % [62].

В 2013 году в качестве основания использовали диэтиламин (Схема 28) [63]. Выход 2-амино-4*H*-хроменов **12** в этом случае составил 90-98%, а время реакции 2.5-3.0 ч. Однако, в этой публикации не приведены данные о температуре плавления конечных соединений, что не позволяет оценить чистоту выделенных 2-амино-4*H*-хроменов **12**.

Таблица 5. Каскадная трансформация салициловых альдегидов и малононитрила в 2-амино-4*H*-хромены **12** под действием оснований.

Основный катализатор	Растворитель	Время реакции	Выход, %	Ссылка
Al_2O_3	_	30 мин.	64-68	[61]
NaHCO ₃ или NEt ₃	CH_2Cl_2	0.5-11 ч	73-91	[62]
Et ₂ NH	EtOH	2.5-3 ч	90-98	[63]
KF	—	10 мин.	94-99	[64]
	1			

В 2013 году в нашей исследовательской группе была осуществлена "solvent-free" трансформация салициловых альдегидов и малононитрила при использовании фторида калия в качестве основания (Схема 28) [64]. Выход соединений **12** – 94-98%, реакция проводилась без растворителя при растирании веществ в ступке в течение 10 мин. Также следует отметить, что для осуществления данной трансформации был использован только 1 мольный % KF.

В отличие от малононитрила, реакции салициловых альдегидов с эфирами циануксусной кислоты в присутствии оснований значительно менее изучены (Таблица 5, Схема 29).

Схема 29

Первый каскадный синтез 2-амино-4*H*-хроменовых систем **26** был сделан в 1977 году с применением ацетата аммония в качестве основания

(Схема 29) [65]. Однако в этом случае, катализ NH₄OAc требует тщательного температурного контроля – 5-10 °C для достижения селективности реакции. Выходы 2-амино-4*H*-хроменов **26** составляли 76-81%, для очистки конечных соединений необходима дополнительная перекристаллизация.

Таблица 6. Каскадная трансформация салициловых альдегидов и циануксусных эфиров в 2-амино-4*H*-хромены **26**.

Основный катализатор	Растворитель	Время реакции	Выход, %	Ссылка
NH ₄ OAc	MeOH, EtOH	2ч	76-81	[65]
Al_2O_3	_	0.5-1 ч	57-75	[61]
Et ₂ NH	EtOH	2.5-3 ч	90-98	[63]

Позднее, в 1984 году, для катализа каскадной реакции салициловых альдегидов и циануксусных эфиров был использован основный Al₂O₃ (Схема 29) [61], однако в этом случае, выход соединений **26** составил только 54-75%. В этих двух работах [61, 65] было использовано большое количество катализатора: 150 мольных % [61] и 100-200 мольных % [65].

В 2013 году для реакции салициловых альдегидов и этилового эфира циануксусной кислоты в качестве основания применяли диэтиламин с использованием этанола в качестве растворителя (Схема 21) [63]. 2-Амино-4*H*-хромены **26** были получены с выходами 92-96%, а время реакции – 1.5-2.5 ч. Однако в этой публикации не сообщается о реакции салициловых альдегидов с метиловым эфиром циануксусной кислоты или другими циануксусными эфирами, а также не приведены данные о температуре плавления конечных соединений, что не позволяет оценить чистоту выделенных 2-амино-4*H*-хроменов **26**. В 2011 году была осуществлена мультикомпонентная реакция салициловых альдегидов, малононитрила и фосфитов с образованием (2-амино-4*H*-хромен-4-ил) фосфонатов **27** (Схема 30).

С использованием K₃PO₄ в качестве основания 4*H*-хромены **27** получены с выходами 74-95%, время реакции 20-60 мин. [66]. Недостатком данной реакции является значительное количество катализатора 20 мольных %.

1.2.6 Каскадные и мультикомпонентные реакции салициловых альдегидов, катализируемые другими типами катализаторов

В 1995 году, в качестве катализатора для каскадной реакции салициловых альдегидов и малононитрила была использована смесь пиридина и уксусной кислоты (Схема 31). Соединения **12** получены с выходами 89-90%, однако время проведения данного процесса составляло 24 ч [67]. Также следует отметить, что в данной работе описано лишь два примера получения 2-амино-4*H*-хроменов **12**.

Схема 31

Реакция салициловых альдегидов с циануксусными эфирами была осуществлена в двух вариантах с применением гетерогенных твердофазных катализаторов (Схема 32) [68, 69].

Первая работа этого типа была сделана в 2000 году с применением молекулярных сит размером 3 Å (Схема 32) [68]. 2-Амино-4*H*-хромены **26** получены с выходами только 50-80%. Процесс отличает длительное время реакции, которое составляло 14 ч.

Позднее, в 2005 году для этой реакции использовали $Zr(KPO_4)_2$ в качестве гетерогенного катализатора (Схема 32) [69]. Выход соединений **26** увеличился до 71-98%. Недостатками данного процесса являются длительное время реакции (в ряде случаев 10 ч), а также использование дорогостоящего $Zr(KPO_4)_2$ в значительных количествах (140 мольных %).

Мультикомпонентная реакция салициловых альдегидов, малононитрила и фосфитов в присутствии различных катализаторов в последнее десятилетие

привлекла внимание исследователей в связи с потенциальной биологической активностью фосфонатов **27** (Таблица 7, Схема 33) [70-75].

Таблица 7. Мультикомпонентная трансформация салициловых альдегидов, малононитрила и триэтилфосфита в (2-амино-4*H*-хромен-4-ил)фосфонаты **27**.

Катализатор	Раство- ритель	Время реакции	T, °C	Выход, %	Ссылка
InCl ₃	EtOH	25-35 мин.	25	70-86	[70]
этиледиаминдиуксусная к-та	EtOH	2-5 ч	25	62-90	[71]
β-циклодекстрин	H_2O	3-4.5 ч	60-70	78-88	[72]
\mathbf{I}_2	H_2O	3-4.5 ч	25	77-91	[73]
$(5-OH-n-C_5H_{11})NH_3OAc$	_	30 мин.	25	76-91	[74]
2-гидроксиэтилацетат аммония на SiO ₂	_	10-40 мин.	25	78-88	[75]

Все описанные в литературе методики синтеза (2-амино-4*H*-хромен-4ил) фосфонатов **27** подразделяются на две группы. Первую группу составляют реакции с участием растворителя (условия и выходы продуктов приведены в Таблице 7) [70-73]. Во всех описанных методах используются значительные количества катализаторов (20-100 мольных %). В случае InCl₃ наблюдаются лишь умеренные выходы соединений **27** [70]. Большинство из этих процессов отличаются длительным временем реакции (в ряде случаев до 5 ч) [71-73], а для выделения фосфонатов **27** необходимо использовать колоночную хроматографию.

Ко второй группе методов относятся реакции без использования растворителя с применением катализаторов на основе солей аммония (условия и выходы продуктов приведены в Таблице 7) [74-75]. Первая реакция из этой серии была сделана в 2012 году с использованием 5гидроксипентиламмоний ацетата [74]. (2-Амино-4*H*-хромен-4-ил)фосфонаты 27 были получены с выходами 76-91%, время процесса – 30 мин., а для очистки конечных соединений была необходима колоночная хроматография. В 2013 году был применен 2-гидроксиэтиламмоний ацетат на SiO₂. Время реакции составляло 10-40 мин, выход – 71-87%. В последнем случае для соединений очистки конечных также необходима колоночная хроматография. В обоих случаях [74-75] также необходим предварительный синтез катализатора, в работе [74] этот процесс занимает более 60 ч. Кроме того, высокий выход соединений не обеспечивается для многих замещенных салициловых альдегидов (менее 80%).

Заключение

Проведенный анализ литературных данных свидетельствует о том, что накоплен значительный экспериментальный материал по каскадным и мультикомпонентным реакциям альдегидов и С-Н кислот. Хотя первые работы в этой области были сделаны в 1977 и 1984 гг, серьезные исследования каскадных и мультикомпонентных реакций альдегидов и С-Н кислот начались в начале 2000-х гг и продолжаются по настоящее время.

Все описанные в литературе методы подразделяются на две группы. К первой группе методов относятся реакции С использованием электрохимических процессов, себя включающих В реакции В диафрагменном электролизере, реакции с применением растворимого анода и реакции, протекающие в бездиафрагменном электролизере. Следует отметить, что реакции в диафрагменном электролизере, а также с использованием растворимого анода обладают рядом ограничений, имеющих как технологическую, так и химическую природу. Для диафрагменного ограничения электролизера технологические связаны co сложностью аппаратного оформления, особенно в случае использования контролируемого производительностью относительно низкой потенциала, И из-за использования малой плотности тока. Химические ограничения связаны с изменением pH реакционной среды, так как в катодной области происходит подщелачивание, а в анодной области – подкисление раствора, что вызывает нежелательные побочные процессы в соединениях, чувствительных к кислотам или шелочам.

бездиафрагменного Преимуществами электролиза, помимо технологической простоты и высокого выхода целевого соединения, является электронейтральность системы в целом. Это обстоятельство позволяет процесс исключительно высокой проводить В мягких условиях С селективностью, осуществить соединений, ЧТО позволяет синтез

40

чувствительных к кислотам/щелочам; в связи с этим развитие данной области электроорганического синтеза представляется наиболее перспективным.

Ко второй группе методов относятся реакции с использованием классической органической химии. Этим процессам, как правило, требуются длительное время реакции, высокая температура и использование значительных количеств катализаторов (20-450 мольных %). Во многих случаях также требуется сложный синтез катализатора, который к тому же занимает продолжительное время. Кроме того, в реакциях с использованием классической органической химии для очистки конечных соединений часто требуются дополнительные процедуры, такие как колоночная хроматография или перекристаллизация.

Суммируя вышеизложенное, следует отметить, что в настоящее время весьма перспективным является метод электрохимического инициирования каскадных и мультикомпонентных реакций в бездиафрагменном электролизере.

Данная диссертационная работа посвящена созданию и развитию новейшего направления в электроорганической химии – каскадным и мультикомпонентным реакциям альдегидов и С-Н кислот в бездиафрагменном электролизере под действием каталитических количеств электрогенерированного основания.

41

Глава 2. Электрохимически инициированные каскадные и мультикомпонентные реакции альдегидов и С-Н кислот

(Обсуждение результатов)

Из анализа литературных данных по каскадным и мультикомпонентным реакциям альдегидов и С-Н кислот следует, что данные процессы были осуществлены как с помощью электрохимического инициирования, так и с помощью методов классической органической химии. Электрохимическое себя инициирование, включающее В реакции В диафрагменном электролизере, а также реакции с использованием растворимого анода, имеет свои недостатки, подробно рассмотренные в разделах 1.1.1 и 1.1.2. Для органической методов классической химии в каскалных И мультикомпонентных реакциях альдегидов и С-Н кислот характерны реакций и высокие температуры, длительное время использование значительных количеств катализаторов – 20-450 мольных % (см. раздел 1.2).

Вместе с тем, анализ литературных данных свидетельствует о том, что процессы, протекающие в бездиафрагменном электролизере при постоянном токе, имеют несомненные преимущества как перед альтернативными электрохимическими процессами, так и перед методами с использованием классической органической химии, подробно рассмотренными в литературном обзоре.

Различные С-Н кислоты, такие как 3-метил-2-пиразолин-5-он, 4-гидрокси-6-метил-2-пирон и 1-метил-4-гидроксихинолин-2-он, не только обладают высоким синтетическим потенциалом, но и являются ключевыми фрагментами многих природных биологически активных соединений и современных лекарственных средств, а также относятся к соединениям, активно взаимодействующим с биологическими рецепторами и широко известными как "privileged medicinal scaffolds" [76].

Настоящая работа посвящена изучению и развитию нового перспективного направления в электрохимии органических соединений – электрохимически инициированным каскадным и мультикомпонентным реакциям альдегидов и С-Н кислот под действием каталитических количеств электрогенерированного основания в бездиафрагменном электролизере.

В главе "Обсуждение результатов" введена новая нумерация соединений, схем, таблиц.

2.1 Электрохимически инициированные каскадные реакции салициловых альдегидов и С-Н кислот

2.1.1 Электрокаталитическая каскадная трансформация салициловых альдегидов и малононитрила в 2-амино-4Hхромен-3-карбонитрилы [15, 20]

Как отмечено в литературном обзоре, ранее в нашей исследовательской группе был обнаружен новый класс электрохимических процессов, инициирование которых осуществляется в электролизере без диафрагмы. Цепную реакцию инициируют электрохимически генерируемые на катоде алкоголят-анионы, которые выступают в качестве нуклеофила и регенерируются в ходе дальнейших химических превращений.

Первая обнаруженная реакция этого типа – циклизация 1,1,2,2тетрацианоциклопропанов В бициклические пирролины [10-12]. Ha были осуществлены основании ЭТОГО процесса различные трансформации, электрокаталитические приводящие замещенным К пирролинам и пирролидонам с высокими выходами [13, 14] (стр. 12-14 литературного обзора).

В настоящей работе впервые осуществлены электрохимически инициированные каскадные и мультикомпонентные реакций альдегидов и С-Н кислот. На первом этапе этого исследования была изучена электрокаталитическая каскадная трансформация салициловых альдегидов и малононитрила в 2-амино-4*H*-хромен-3-карбонитрилы в бездиафрагменном электролизере.

4*H*-хроменовый фрагмент широко представлен в природных алкалоидах, флавоноидах, токоферолах и антоцианах [77-79]. В последние годы функционально замещенные 4*H*-хромены активно используются для синтеза перспективных в области биомедицинской химии соединений [80-83]. Постоянно растущий интерес к 4*H*-хроменам, содержащим нитрильную группу, обусловлен их применением для лечения воспалительных заболеваний человека, ассоциированных с активностью белка TNFα, таких как ревматоидные и псориатические артриты, а также в терапии рака [84].

Электрокаталитическая каскадная трансформация салициловых альдегидов **1a-f** и малононитрила в бездиафрагменном электролизере приводит к (2-амино-3-циано-4*H*-хромен-4-ил)малононитрилам **2a-f** (Схема 1).

Схема 1

Условия данной были оптимизированы реакции примере на взаимодействия альдегида **1a** салицилового И двух эквивалентов малононитрила (Таблица 1). Было найдено, что проведение электролиза в бездиафрагменной ячейке при плотности тока $j = 10 \text{ мA/cm}^2$ (сила тока I = 50 мА, площадь электродов S = 5 см²) и температуре 20 °C обеспечивает (2-амино-3-циано-4*H*-хромен-4оптимальные условия получения ил)малононитрила 2а (выход по веществу 95%, выход по току 1900%). Увеличение плотности тока до 50 мA/см² (I = 250 мA) уменьшало выход продукта 2a как по веществу, так и по току, вероятно, в результате активации нежелательных прямых электрохимических процессов, приводящих к олигомеризации исходных соединений. Уменьшение плотности тока до 5 мА/см² также приводило к уменьшению выхода 2a по веществу и по току, вероятно, из-за недостаточно эффективного инициирования каскадной реакции в этих условиях. Кроме того, уменьшение плотности тока приводит к увеличению времени электролиза. Использование *n*-PrOH в качестве растворителя при электролизе салицилового альдегида 1a и малононитрила позволяло получить наибольший выход 2-амино-4*H*-хромена 2a, который выделяется простым фильтрованием и высушиванием осадка, выпавшего по завершении электролиза (Таблица 1).

Таблица 1. Электрокаталитическая каскадная трансформация салицилового альдегида **1а** и малононитрила в (2-амино-3-циано-4*H*-хромен-4-ил)малононитрил **2a**^[a].

Растворитель	Количество электричества, F/моль	Плотность тока, мА/см ²	Время, мин.	Выход 2а, % ^[b]	Выход по току, %
EtOH	0.23	50	15	75	330
EtOH	0.12	25	15	80	670
EtOH	0.05	10	15	85	1700
EtOH	0.02	5	15	78	3900
MeOH	0.05	10	15	69	1380
<i>n</i> -PrOH	0.05	10	15	95	1900

[а] 10 ммоль 1а, 20 ммоль малононитрила, 1 ммоль NaBr, 20 мл спирта, Feкатод (5 см²), С-анод (5 см²), бездиафрагменная ячейка, 20 °С, 15 мин.
[b] Выход выделенного (2-амино-3-циано-4*H*-хромен-4-ил)малононитрила

2a.

В найденных оптимальных условиях электролиз салициловых альдегидов **1a-f** и двух эквивалентов малононитрила в бездиафрагменной ячейке приводил к соответствующим (2-амино-3-циано-4*H*-хромен-4-ил)малононитрилам **2a-f** с выходом 85-95% по веществу и 1700-1900% по току за 15 мин. (Таблица 2).

Таблица 2. Электрокаталитическая каскадная трансформация салициловых альдегидов **1а-f** и малононитрила в (2-амино-3-циано-4*H*-хромен-4-ил)малононитрилы **2а-f**^[а].

Альдегид	D ¹		Количество		Выход	Выход
	K ¹	\mathbf{R}^2	электричества,	Продукт	2 , % ^[b]	
			I / MOJID			10Ky, 70
1 a	Н	Н	0.05	2a	95	1900
1b	Br	Н	0.05	2b	85	1700
1c	NO_2	Н	0.05	2c	93	1860
1d	Н	OMe	0.05	2d	95	1900
1e	Br	OMe	0.05	2e	86	1720
1f	Из 1f (см	. Схему 1)	0.05	2 f	91	1820

[а] 10 ммоль салицилового альдегида 1, 20 ммоль малононитрила, 1 ммоль NaBr, 20 мл *n*-PrOH, Fe-катод (5 см²), С-анод (5 см²), бездиафрагменная ячейка, 0.05 F/моль, *j* = 10 мА/см², 20 °C, 15 мин.

[b] Выход выделенных (2-амино-3-циано-4*H*-хромен-4-ил)малононитрилов **2**.

На основании полученных результатов, а также данных, полученных электрокаталитической механизмам цепной ранее по шиклизации тетрацианоциклопропанов [12] эфиров 3-замещенных И 2,2-дицианоциклопропан-1,1-дикарбоновых [14], кислот предложен следующий механизм электрокаталитической каскадной трансформации 47

салициловых альдегидов **1a-f** и двух эквивалентов малононитрила в 4*H*-хромены **2a-f** (Схема 2). В результате катодной реакции генерируется алкокси-анион, который далее в растворе депротонирует малононитрил. Образующийся анион малононитрила взаимодействует с салициловым альдегидом 1 по типу конденсации Кневенагеля с отщеплением аниона [87]. Далее реализуется внутримолекулярная гидроксильного циклизация аддукта, конденсация и присоединение второй молекулы малононитрила. Последующая таутомеризация приводит к конечному 4*H*-хромену 2 и регенерации аниона малононитрила, который вступает в следующий цикл каталитического каскадного процесса, взаимодействуя с другой молекулой салицилового альдегида. В результате, для полной конверсии салицилового альдегида и малононитрила в соответствующий 4H-хромен, теоретически, достаточно образования лишь одного алкоксильного аниона на катоде.

Схема 2

Известные в литературе методы синтеза 2-амино-4*H*-хромен-3карбонитрилов основаны на конденсации салициловых альдегидов и двух эквивалентов малононитрила в присутствии основного Al₂O₃ [61], смеси пиридин-уксусная кислота [67], NaHCO₃ или NEt₃ [62], а также с использованием Et₂NH [63]. В работах [61, 62] выходы конечных 2-амино-4*H*-хромен-3-карбонитрилов в большинстве случаев не превышают 75%, кроме того, требуется использование значительных количеств катализатора: 50-150 мольных %. Использование смеси пиридин-уксусная кислота позволяет увеличить выход продукта до 90%, но при этом время реакции возрастает до 24 ч [67]. В работе [63] в качестве основания использовали диэтиламин Et₂NH. Выход 2-амино-4*H*-хромен-3-карбонитрилов в этом случае составил 90-98%, а время реакции 2.5-3.0 ч. Однако, в этой публикации не приведены данные о температуре плавления конечных соединений, что не позволяет оценить чистоту выделенных 2-амино-4Нхроменов [63]. Таким образом, из литературных данных следует, что каскадная реакция салициловых альдегидов и малононитрила чувствительна к условиям проведения реакции, а известные методики приводят либо к высокому выходу конечного продукта, недостаточно либо требуют времени реакции и/или значительной загрузки продолжительного катализатора.

Разработанная нами простая электрокаталитическая система позволяет осуществить в мягких условиях прямую трансформацию салициловых альдегидов и двух эквивалентов малононитрила в 2-амино-4*H*-хромены с высокими выходами. Малое время проведения реакции (15 мин.), простое оборудование, использование бездиафрагменного электролизера, недорогих исходных реагентов, простое выделение конечных продуктов отличают предложенный электрокаталитический каскадный процесс, в результате чего он является эффективным и удобным методом получения функционально замещенных 4*H*-хроменов.

49

Полученные 2-амино-4*H*-хромены 2 являются аналогами соединений с уже известной биологической активностью [84-86]. 2-Амино-4*H*-хромены, содержащие нитрильную группу, используются при лечении артритов различных типов и применяются в терапии многих видов рака. Так, циано замещенный бензопиранопиримидин I используется при лечении артритов (Схема 3) [84]. 2-Амино-3-циано-4*H*-хромен II (МХ58151) обладает множественным действием против клеток рака молочной железы, клеток рака легкого, рака толстой кишки. Кроме того, II (МХ58151) перспективен при лечении видов раковых опухолей, устойчивых к действию других известных противораковых средств, таких как Taxol и Taxotere (Схема 3) [85, 86].

Схема 3

2.1.2 Электрокаталитическая каскадная трансформация салициловых альдегидов и циануксусных эфиров в 2-амино-4Hхромен-3-карбоксилаты [16, 20]

На следующем этапе исследований электрокаталитических трансформаций альдегидов и С-Н кислот была изучена электрокаталитическая каскадная трансформация салициловых альдегидов **1а-d, f** и двух эквивалентов цианоацетатов **3а,b** в 2-амино-4*H*-хромены **4а-j** (Схема 4).

Схема 4

Для выяснения синтетического потенциала реакции и определения оптимальных условий ее проведения было исследовано превращение салицилового альдегида **1a** и двух эквивалентов метилового эфира циануксусной кислоты **3a** в 4*H*-хромен **4a** (Таблица 3). Установлено, что

наилучшие выходы 2-амино-4-(1-циано-2-метокси-2-оксоэтил)-4*H*-хромен-3карбоксилата **4a** достигаются при плотности тока j = 10 мА/см² (сила тока I = 50 мА, площадь электродов S = 5 см²) и пропускании 0.09 F/моль электричества в течение 30 мин при 20 °C. 4*H*-Хромен **4a** выпадал в осадок непосредственно из реакционной смеси и отфильтровывался в конце реакции. Так как эфиры циануксусной кислоты являются более слабыми C-H кислотами по сравнению с малононитрилом, для осуществления данной каскадной трансформации необходимо пропускание большего количества электричества – 0.09 F/моль.

Таблица 3. Электрокаталитическая каскадная трансформация салицилового альдегида **1а** и метилового эфира циануксусной кислоты **3а** в метил 2-амино-4-(1-циано-2-метокси-2-оксоэтил)-4*H*-хромен-3-карбоксилат **4a**^[a].

Количество электричества, F/моль	Сила тока, мА	Плотность тока, мА/см ²	Время, мин	Выход 4а, % ^[b]	Выход по току, %
0.47	250	50	30	68	145
0.23	125	25	30	75	325
0.09	50	10	30	95	1055
0.04	20	5	30	79	1975

- [а] 10 ммоль салицилового альдегида 1а, 20 ммоль метилового эфира циануксусной кислоты 3а, 1 ммоль NaBr, 20 мл EtOH, Fe-катод (5 см²), С-анод (5 см²), бездиафрагенная ячейка, 20 °C, 30 мин.
- [b] Выход выделенного метил 2-амино-4-(1-циано-2-метокси-2-оксоэтил)-4*H*-хромен-3-карбоксилата **4a**.

В разработанных оптимальных условиях в бездиафрагменной ячейке был проведен совместный электролиз замещенных салициловых альдегидов **1a-d,f** и двух эквивалентов эфиров циануксусной кислоты **3a,b**. Выходы 2-амино-4*H*-хромен-3-карбоксилатов 4а-ј составили 83-95% по веществу и 920-1060% по току, а время электролиза – 30 мин. (Таблица 4).

Таблица 4. Электрокаталитическая каскадная трансформация салициловых альдегидов 1a-1d, 1f и циануксусных эфиров 3a,b в алкил 2-амино-4-(1циано-2-алкокси-2-оксоэтил)-4H-хромен-3-карбоксилаты **4а-** $j^{[a]}$.

	Huon				4 <i>H</i> -		Выход
Δ пь пеги п	циан-	\mathbf{R}^{1}	\mathbf{R}^2	R ³	хромен;	Соотношение	по
и цидет ид	эфир	K	κ	κ	выход,	изомеров ^[c]	току,
	эфир				% ^[b]		%
1a	3 a	Н	Η	Me	4a , 95	2:1	1060
1a	3 b	Н	Η	Et	4b , 91	2:1	1010
1b	3 a	Br	Н	Me	4c , 93	3:2	1030
1b	3 b	Br	Η	Et	4d , 88	2:1	980
1c	3 a	NO_2	Н	Me	4e , 85	3:2	940
1c	3 b	NO_2	Η	Et	4f , 87	5:2	970
1 d	3 a	Н	MeO	Me	4g , 84	2:1	930
1 d	3 b	Н	MeO	Et	4h , 89	2:1	990
1f	3 a	Из	3 1 f	Me	4i , 85	7:2	940
1f	3 b	(см. С	хему 4)	Et	4j , 83	2:1	920

- [а] 10 ммоль салицилового альдегида 1, 20 ммоль циануксусного эфира 3, 1 ммоль NaBr, 20 мл EtOH, Fe-катод, С-анод, бездиафрагменная ячейка, 0.09 F/моль, i = 10 мA/см², 20 °C, 30 мин.
- [b] Выход выделенных алкил 2-амино-4-(1-циано-2-алкокси-2-оксоэтил)-4*Н*-хромен-3-карбоксилатов **4**.
- [с] Данные ¹Н и ¹³С ЯМР.

Согласно данным ¹Н и ¹³С ЯМР спектроскопии, полученные 2-аминособой 4*Н*-хромен-3-карбоксилаты представляют 4a-j смесь двух 53

преобладанием одного из них (Таблица 4). По диастереомеров, с термодинамическим соображениям преобладающий изомер имеет эритроконфигурацию (Схема 5). Кроме того, смесь диастереомеров 4b (2:1, была перекристаллизована Таблица 4) ИЗ этанола c выделением преобладающего изомера [69]. Его конфигурация была установлена как эритро-конфигурация на основании сравнения полученных данных с литературными [63, 88].

Схема 5

Механизм данной электрокаталитической трансформации аналогичен рассмотренной ранее реакции с малононитрилом (Схема 6).

Схема 6

Известные в литературе методы синтеза 2-амино-4*H*-хромен-3карбоксилатов основаны на взаимодействии салициловых альдегидов с эфирами циануксусной кислоты с использованием Al₂O₃ [61], Et₂NH [63], NH₄OAc [65], или Zr(KPO₄)₂ [69] в качестве катализаторов (стр. 32-35 литературного обзора). Использование твердофазного основного катализатора Al₂O₃ позволяет получать конечные соединения с выходами только 54-75% [61]. Реакция, катализируемая ацетатом аммония, приводила к 2-амино-4*H*-хромен-3-карбоксилатам с выходами 76-81%, однако в этом случае для достижения селективности эксперимент требует тщательного температурного контроля – 5-10 °С [65]. Недостатками процесса с использованием Zr(KPO₄)₂ являются длительное нагревание при 60 °C (в ряде случаев 10 ч), а также использование дорогостоящего катализатора в значительных количествах (140 мольных %) [69]. В работе [63] для реакции салициловых альдегидов и этилового эфира циануксусной кислоты в качестве основания применяли диэтиламин. Конечные соединения были получены с выходами 92-96%, а время реакции – 1.5-2.5 ч. Однако в этой публикации не сообщается о реакции салициловых альдегидов с метиловым эфиром циануксусной кислоты или другими циануксусными эфирами, а также не приведены данные о температуре плавления конечных соединений, что не позволяет оценить чистоту выделенных 2-амино-4*H*-хроменов [63]. Таким образом, из литературных данных следует, что реакция салициловых альдегидов с эфирами циануксусной кислоты чувствительна к условиям проведения реакции и требует тщательного температурного контроля и использования значительных количеств катализаторов. Кроме того, большинство процессов приводят к недостаточно высокому выходу конечного продукта.

Разработанная электрокаталитическая система позволяет осуществить в мягких условиях прямую трансформацию салициловых альдегидов и двух эквивалентов эфиров циануксусной кислоты в 2-амино-4*H*-хромены с

высокими выходами. Малое время проведения реакции (30 мин.), простое оборудование, использование бездиафрагменного электролизера, недорогих исходных реагентов, простое выделение конечных продуктов отличают предложенный электрокаталитический каскадный процесс, в результате чего он является эффективным и удобным методом получения функционально замещенных 4*H*-хроменов.

Полученные 2-амино-4*H*-хромен-3-карбоксилаты 4 относятся к классу соединений выраженной биологической фармакологической С И активностью. В терапии рака соединение III (НА 14-1) и его аналоги являются новым классом соединений, вызывающих апоптоз в клетках лимфомы В и лейкемии HL-60 (Схема 7) [89].

Схема 7

В данном разделе диссертационной работы приведены данные по исследованию электрокаталитической мультикомпонентной трансформации салициловых альдегидов, малононитрила и триэтилфосфита в (2-амино-4*H*-хромен-4-ил)фосфонаты (Схема 8) [23].

Схема 8

Фосфонаты являются важными субстратами в биохимических процессах и широко известны как биологически активные соединения [90], а также как антиметаболиты, антибиотики, ингибиторы энзимов и миметики [91-96]. Недавно у (2-амино-4*H*-хромен-4-ил)фосфонатов была обнаружена антираковая активность против немелкоклеточного рака легкого (линия клеток A549) и против плоскоклеточного рака кожи (линия клеток KB) [97].

На первом этапе исследования нами была изучена электрокаталитическая мультикомпонентная трансформация салицилового

альдегида 1а, малононитрила и триэтилфосфита в (2-амино-3-циано-4H-**5**a (Таблица 5). Проведение хромен-4-ил)фосфонат электролиза В бездиафрагменной ячейке при плотности тока j = 20 мA/см² (сила тока I = 100 мА, площадь электродов S = 5 см²) и температуре 78 °C обеспечивает оптимальные условия получения 5а (выход по веществу 93%, выход по току 930%). Увеличение плотности тока до 40 мА/см² уменьшает выход **5а** как по веществу, так и по току, вероятно, в результате активации нежелательных прямых электрохимических процессов, приводящих к олигомеризации исходных соединений. Проведение электролиза при 20 °C снижает выход (2-амино-3-циано-4*H*-хромен-4-ил)фосфоната конечного **5**a И не обеспечивает полную конверсию исходных соединений (Таблица 5).

Таблица 5. Электрокаталитическая мультикомпонентная трансформация салицилового альдегида **1а**, малононитрила и триэтилфосфита в диэтил (2-амино-3-циано-4*H*-хромен-4-ил)фосфонат **5a**^[a].

T, °C	Количество электричества, F/моль	Сила тока, мА	Плотность тока, мА/см ²	Время, мин.	Выход 5а, % ^[b]	Выход по току, %
20	0.1	50	10	16	76	760
20	0.1	100	20	8.0	81	810
20	0.1	150	30	5.4	70	700
20	0.1	200	40	4.0	65	650
78	0.1	100	20	8.0	93	930

[а] 5 ммоль салицилового альдегида **1а**, 5 ммоль малононитрила, 5 ммоль триэтилфосфита, 0.5 ммоль NaBr, 20 мл EtOH, Fe-катод, C-анод, бездиафрагменная ячейка, 0.1 F/моль.

[[]b] Выход выделенного диэтил (2-амино-3-циано-4*H*-хромен-4ил)фосфоната **5а**.

В найденных оптимальных условиях электролиз салициловых альдегидов **1a,b,d,f-i**, малононитрила и триэтилфосфита в бездиафрагменной ячейке приводил к соответствующим (2-амино-4*H*-хромен-4-ил)фосфонатам **5a-g** с выходом 88-93% по веществу и 880-930% по току за 8 мин. (Таблица 6).

Таблица 6. Электрокаталитическая мультикомпонентная трансформация салициловых альдегидов **1a,b,d,f-i**, малононитрила и триэтилфосфита в (2-амино-3-циано-4*H*-хромен-4-ил)фосфонаты **5a-g**^[a].

Салициловый	T °C	D 1	D ²	Пролит	Выход	Выход
альдегид	1, C	К	К	продукт	продукта, % ^[b]	по току, %
1 a	20	Н	Н	5a	81	810
1 a	78	Н	Н	5a	93	930
1b	78	Br	Н	5b	89	890
1d	78	Н	OMe	5c	91	910
1g	20	Me	Н	5d	35 ^[c]	350
1g	78	Me	Н	5d	90	900
1h	20	Cl	Н	5e	41 ^[c]	410
1h	78	Cl	Н	5e	88	880
1i	78	Н	OEt	5 f	88	880
1f	78	И	3 1f	5g	90	900
1f	20	[(см. Схему 8)]		5g	85	850

[а] 5 ммоль салициловых альдегидов 1, 5 ммоль малононитрила, 5 ммоль триэтилфосфита, 0.5 ммоль NaBr, 20 мл EtOH, Fe-катод, C-анод, бездиафрагменная ячейка, *I* = 100 мA, *j* = 20 мA/см².

[b] Выход выделенных (2-амино-4*H*-хромен-4-ил)фосфонатов 5.

[c] Данные ¹Н ЯМР.

На основании полученных результатов, а также данных, полученных электрокаталитической механизмам ранее ПО цепной циклизации тетрацианоциклопропанов [12], a также ПО механизмам электрокаталитических каскадных трансформаций альдегидов и С-Н кислот [15, 20, 24], предложен следующий механизм электрокаталиической мультикомпонентной трансформации альдегидов 1. салициловых малононитрила и триэтилфосфита в (2-амино-4*H*-хромен-4-ил)фосфонаты 5. В результате катодной реакции образуется этокси-анион, который далее в депротонирует малононитрил. растворе Анион малононитрила взаимодействует с салициловым альдегидом 1 по типу конденсации Кневенагеля с образованием аниона А, который далее в растворе подвергается внутримолекулярной циклизации с образованием 2-имино-2*H*хромен-3-карбонитрила **B**. Присоединение триэтилфосфита по активированной двойной связи приводит к образованию фосфониевой соли С. На последней стадии под действием этокси-аниона С переходит в конечное соединение 5 и происходит регенерация этокси-аниона, который вступает в следующий цикл электрокаталитического процесса. Теоретически, образования лишь одного этокси-аниона на катоде достаточно для полной конверсии салицилового альдегида, малононитрила и триэтилфосфита в соответствующий (2-амино-4*H*-хромен-4-ил)фосфонат 5 (Схема 9).

Схема 9

литературе методы (2-амино-4*H*-хромен-4-Известные в синтеза ил) фосфонатов основаны на мультикомпонентной реакции салициловых альдегидов, малононитрила и триэтилфосфита с применением в качестве катализаторов K₃PO₄ [66], InCl₃ [70], этилендиаминдиуксусной кислоты [71], β -циклодекстрина [72], молекулярного I₂ [73], а также катализаторов на основе солей аммония [74, 75]. В работах [66, 70-73] используются значительные количества катализаторов (20-100 мольных %). В случае InCl₃ наблюдаются лишь умеренные (70-86%) выходы (2-амино-4*H*-хромен-4ил)фосфонатов [70]. Большинство из этих процессов отличаются длительным временем реакции (в ряде случаев до 5 часов), а для выделения конечных фосфонатов необходимо использовать колоночную хроматографию [71-73]. В работах с применением катализаторов на основе солей аммония [74-75] (2-амино-4*H*-хромен-4-ил)фосфонаты получены с выходами 71-91%, однако для очистки продуктов необходима колоночная хроматография. В обоих случаях [74, 75] также необходим предварительный синтез катализатора, в работе [74] этот процесс занимает более 60 ч. Кроме того, высокий выход не обеспечивается для многих замещенных салициловых альдегидов (менее 80%).

Таким образом, нами был реализован мультикомпонентный электрокаталитический процесс получения функционально замещенных (2-амино-4*H*-хромен-4-ил)фосфонатов из салициловых альдегидов, малононитрила и триэтилфосфита с выходом 88-93% по веществу и 880-930% по току.

Преимуществами электрокаталитического метода являются время проведения реакции – всего 8 мин., использование доступных реактивов, простого оборудования и бездиафрагменной ячейки.

2.2 Электрохимически инициированные каскадные и мультикомпонентные реакции бензальдегидов и С-Н кислот

2.2.1 Электрокаталитическая каскадная трансформация бензальдегидов и 3-метил-1-фенил-2-пиразол-5-она в замещенные 4,4'-(арилметилен)бис(1Н-пиразол-5-олы) [18]

В данном разделе диссертационной работы представлены данные по электрохимически инициированным каскадным и мультикомпонентным реакциям бензальдегидов и С-Н кислот.

На первом этапе исследований электрокаталитических трансформаций бензальдегидов и С-Н кислот нами была изучена электрокаталитическая каскадная трансформация бензальдегидов **6а-h** и 3-метил-1-фенил-2-пиразолин-5-она в 4,4'-(арилметилен)бис(1*H*-пиразол-5-олы) **7а-h** в бездиафрагменной ячейке (Схема 10).

Схема 10

Для выяснения синтетического потенциала реакции и определения оптимальных условий ее проведения вначале было исследовано

взаимодействие бензальдегида **6a** и 3-метил-1-фенил-2-пиразолин-5-она в различных условиях (Таблица 7).

Таблица 7. Электрокаталитическая каскадная трансформация бензальдегида **6а** и 3-метил-1-фенил-2-пиразолин-5-она в 4,4'-(фенилметилен)бис(1*H*пиразол-5-ол) **7а**^[а].

Количество электричества, F/моль	Сила тока, мА	Плотность тока, мА/см ²	Время, мин.	Выход 7а, % ^[b]	Выход по току, %
0.04	5	1	133	67	1675
0.04	10	2	66	73	1825
0.04	20	4	33	82	2050
0.04	50	10	13	74	1850

[а] 10 ммоль бензальдегида **6а**, 20 ммоль 3-метил-1-фенил-2-пиразолин-5она, 1 ммоль NaBr, 20 мл EtOH, Fe-катод, С-анод, бездиафрагменная ячейка, 0.04 F/моль, 20 °C.

[b] Выход выделенного 4,4'-(фенилметилен)бис(1*H*-пиразол-5-ола) 7а.

Установлено, что наилучшие выходы 4,4'-(фенилметилен)бис(1*H*пиразол-5-ола) **7а** достигаются при плотности тока $j = 4 \text{ мA/cm}^2$ (сила тока I = 20 мA, площадь электродов $S = 5 \text{ см}^2$) и пропускании 0.04 F/моль электричества в течение 33 мин. при температуре 20 °C. Увеличение плотности тока до $j = 10 \text{ мA/cm}^2$ (I = 50 мA) приводит к некоторому снижению выхода, что связано, вероятно, с протеканием в этих условиях нежелательных побочных электрохимических процессов на электродах, приводящих к олигомеризации исходных соединений.

В найденных оптимальных условиях электролиз бензальдегидов **6а-h** и двух эквивалентов 3-метил-1-фенил-2-пиразолин-5-она в бездиафрагменной

ячейке приводил к соответствующим 4,4'-(арилметилен)бис(1*H*-пиразол-5олам) **7а-h** с выходом 80-96% по веществу и 2000-2400% по току (Таблица 8).

 Таблица 8.
 Электрокаталитическая
 каскадная
 трансформация

 бензальдегидов
 6a-h
 и
 3-метил-1-фенил-2-пиразолин-5-она
 в

 4,4'-(арилметилен)бис(1*H*-пиразол-5-олы)
 7a-h^[a].
 5
 5

Альдегид	R^1	Количество R ¹ электричества, Продукт F/моль		Выход 7, % ^[b]	Выход по току, %
6a	Н	0.04	7a	82	2050
6b	2-OH	0.04	7b	86	2150
6c	4-OMe	0.04	7c	92	2300
6d	4-Me	0.04	7d	92	2300
6e	2-Cl	0.04	7e	80	2000
6f	4-C1	0.04	7 f	94	2350
6g	3-Br	0.04	7g	96	2400
6h	$4-NO_2$	0.04	7h	92	2300

[а] 10 ммоль бензальдегида 6, 20 ммоль 3-метил-1-фенил-2-пиразолин-5она, 1 ммоль NaBr, 20 мл EtOH, Fe-катод, С-анод, бездиафрагменная ячейка, 0.04 F/моль, *j* = 4 мА/см², 33 мин., 20 °C.

[b] Выход выделенных 4,4'-(арилметилен)бис(1*H*-пиразол-5-олов) 7.

На основании полученных данных и данных по электрокаталитическим цепным процессам, изученным нами ранее [12, 15, 16], был предложен следующий механизм для электрокаталитической каскадной реакции бензальдегидов и 3-метил-1-фенил-2-пиразолин-5-онов. В результате реакции на катоде образуется этилат-анион, который далее в растворе депротонирует 3-метил-1-фенил-2-пиразолин-5-он (Схема 11).

Схема 11

Образующийся анион пиразолин-5-она вступает конденсацию В Кневенагеля с бензальдегидом, при ЭТОМ происходит образование 4-бензилиден-5-метил-2-фенил-2,4-дигидро-3*H*-пиразол-3-она (Схема 12) [87]. Присоединение еще одного эквивалента 3-метил-1-фенил-2-пиразолин-5-она к аддукту, последующее протонирование и таутомерное превращение приводят к конечным соединениям 7 и происходит регенерация этилатаниона. Последний вступает в следующий цикл каскадного процесса, взаимодействуя с другой молекулой пиразолин-5-она. Теоретически для полной конверсии исходных соединений достаточно образования лишь одного этилат-аниона на катоде (Схема 12).

Схема 12

Каскадная реакция с участием ароматических альдегидов и 3-метил-2пиразолин-5-она с образованием 4,4'-(арилметилен)бис(1*H*-пиразол-5-олов) интенсивно изучается в последнее десятилетие в связи с биологической активностью этих соединений. К настоящему времени известен ряд методик, подходящих для этого процесса (стр. 23-25 литературного обзора) [33-46]. Многие описанные в литературе методы синтеза 4,4'-(арилметилен)бис(1*H*пиразол-5-олов) имеют свои недостатки, связанные или с длительным временем проведения реакции, или жесткими условиями проведения процесса, а также дополнительными стадиями, необходимыми для очистки конечных соединений. Кроме того, во многих работах необходим сложный предварительный синтез катализатора.

Разработанная электрокаталитическая система нами позволяет осуществить в мягких условиях прямую трансформацию бензальдегидов и эквивалентов 3-метил-1-фенил-2-пиразолин-5-она двух В 4,4'-(арилметилен)бис(1*H*-пиразол-5-олы) с высокими выходами. Несомненными преимуществами предложенного электрокаталитического процесса являются малое время проведения реакции (33 мин.), простое оборудование, использование бездиафрагменного электролизера, недорогих исходных реагентов, простое выделение конечных продуктов, в результате эффективным удобным чего OH является И методом получения функционально замещенных 4,4'-(арилметилен)бис(1*H*-пиразол-5-олов).

Полученные 4,4'-(арилметилен)бис(1*H*-пиразол-5-олы) известны как класс веществ с широким спектром фармакологической, в том числе противовоспалительной [98], жаропонижающей [99], стимулирующей работу желудочно-кишечного тракта [100] и антидепрессантной активности [101], а также как хелатирующие и экстракционные агенты для ионов металлов различного типа [46].

67

2.2.2 Электрокаталитическая мультикомпонентная трансформация бензальдегидов, 3-метил-2-пиразолин-5-онов и С-Н кислот в 3-(5-гидрокси-3-метилпиразол-4-ил)-3арилпропионитрилы [19]

На следующем этапе исследований электрокаталитических трансформаций бензальдегидов и С-Н кислот была изучена электрокаталитическая мультикомпонентная трансформация бензальдегидов **6а,d,f-g,i-k**, 3-метил-2-пиразолин-5-онов **9а,b** и С-Н кислот **8а-с** в 3-(5-гидрокси-3-метилпиразол-4-ил)-3-арилпропионитрилы **10а-ј** (Схема 13).

Схема 13

Для оптимизации условий проведения реакции нами была изучена электрокаталитическая мультикомпонентная трансформация незамещенного бензальдегида **6a**, малононитрила **8a** и 3-метил-2-пиразолин-5-она **9a** в [(5гидрокси-3-метил-1*H*-пиразол-4-ил)(фенил)метил]малононитрил **10a** (Таблица 9). Проведение электролиза в бездиафрагменной ячейке при плотности тока j = 4 мА/см² (сила тока I = 20 мА, площадь электродов S = 5 см²) и температуре 20 °C обеспечивало оптимальные условия получения 10а (выход по веществу 97%, выход по току 3230%). Увеличение плотности тока до i = 10 мА/см² уменьшало выход **10а** как по веществу, так и вероятно, в результате активации нежелательных прямых ПО току, электрохимических процессов, приводящих к олигомеризации исходных соединений. Уменьшение плотности тока до 1 мА/см² также приводило к уменьшению выхода 10а по веществу и по току, вероятно, из-за недостаточно эффективного инициирования каскадного процесса в этих условиях. Кроме того, уменьшение плотности тока приводит к увеличению времени электролиза. Конечное соединение выпадает в осадок по завершении реакции и выделяется простым фильтрованием. Использование EtOH или *n*-PrOH в качестве растворителя является более предпочтительным по сравнению с МеОН, так как 10а обладает лучшей растворимостью в метаноле.

Таблица 9. Электрокаталитическая мультикомпонентная трансформация бензальдегида 6а, малононитрила 8а и 3-метил-2-пиразолин-5-она 9а в [(5-гидрокси-3-метил-1*H*-пиразол-4-ил)(фенил)метил]малононитрил 10a^[a].

Количество электричества, F/моль	Сила тока, мА	Плотность тока, мА/см ²	Спирт	Время, мин.	Выход 10а, % ^[b]	Выход по току, %
0.03	5	1	EtOH	100	75	2500
0.03	10	2	EtOH	50	80	2670
0.03	20	4	EtOH	25	97	3230
0.03	50	10	EtOH	10	86	2870
0.03	20	4	MeOH	25	81	2700
0.03	20	4	<i>n</i> -PrOH	25	93	3100

[а] 10 ммоль бензальдегида 6а, 10 ммоль малононитрила 8а, 10 ммоль З-метил-2-пиразолин-5-она 9а, 1 ммоль NaBr, 20 мл спирта, Fe-катод (5 см²), С-анод (5 см²), бездиафрагменная ячейка, 0.03 F/моль, 20 °C.

[b] Выход выделенного 10a.

В найденных оптимальных условиях электролиз бензальдегидов **6a,d,f-g,i-k**, 3-метил-2-пиразолин-5-онов **9a,b** и С-Н кислот **8a-c** в бездиафрагменной ячейке приводил к соответствующим 3-(5-гидрокси-3-метилпиразол-4-ил)-3-арилпропионитрилам **10a-j** с выходом 75-97% по веществу и 2500-3250% по току за 25 мин. (Таблица 10).

Таблица 10. Электрокаталитическая мультикомпонентная трансформация бензальдегидов **6a,d,f-g,i-k**, 3-метил-2-пиразолин-5-онов **9a,b** и С-Н кислот **8a-с** в 3-(5-гидрокси-3-метилпиразол-4-ил)-3-арилпропионитрилы **10a-j**^[a].

			Количество		BUYOT	Выход
\mathbb{R}^1	Х	\mathbb{R}^2	электричества,	Продукт	Dылод 10 %[b]	ПО
			F /моль		10, 70	току, %
Н	CN	Н	0.03	10a	97	3230
Н	CO ₂ Me	Н	0.03	10b	84	2800
Н	CO ₂ Et	Н	0.03	10c	91	3030
4-Me	CN	Н	0.03	10d	80	2670
4-Cl	CN	Н	0.03	10e	75	2500
3-Br	CN	Н	0.03	10f	78	2600
4-Et	CN	Н	0.03	10g	76	2530
4-F	CN	Н	0.03	10h	82	2730
2-OMe	CN	Н	0.03	10i	79	2630
Н	CN	Ph	0.03	10j	85	2830

[a] 10 ммоль бензальдегида 6, 10 ммоль 3-метил-2-пиразолин-5-она 9, 10 ммоль С-Н кислоты 8, 1 ммоль NaBr, 20 мл EtOH, Fe-катод (5 см²), С-анод (5 см²), бездиафрагменная ячейка, 0.03 F/моль, *j* = 4 мА/см², 25 мин., 20 °C.

[[]b] Выход выделенных **10**.

На основании полученных данных и данных по электрокаталитическим цепным процессам, изученным нами ранее [15, 16, 18], был предложен следующий механизм для электрокаталитической мультикомпонентной трансформации бензальдегидов, 3-метил-2-пиразолин-5-онов и С-Н кислот. В результате реакции на катоде образуется этилат-анион, который далее в растворе депротонирует циано-функционализированную С-Н кислоту (Схема 14).

> катод: EtOH + e \longrightarrow EtO^{\ominus} + 1/2H₂ в растворе: CH₂(CN)X + EtO^{\ominus} \longrightarrow CH(CN)X + EtOH X = CN, CO₂Me, CO₂Et

Схема 14

Образующийся анион циано-функционализированной С-Н кислоты Кневенагеля вступает В с образованием конденсацию бензилиденмалононитрила или бензилиденцианоацетата (Схема 15) [87], которые далее вступают в реакцию Михаэля с 3-метил-2-пиразолин-5-оном 9 образованием соответствующих 3-(5-гидрокси-3-метилпиразол-4-ил)-3-С арилпропионитрилов 10 происходит регенерация этилат-аниона. И Последний вступает в следующий цикл каскадного процесса, взаимодействуя другой молекулой циано-функционализированной C-H С кислоты. Теоретически для полной конверсии исходных соединений достаточно образования лишь одного этилат-аниона на катоде (Схема 15).

71

Схема 15

Известный литературе синтеза замещенных В метод 3-(5-гидрокси-3-метилпиразол-4-ил)-3функционализированных арилпропионитрилов использует присоединение по Михаэлю 3-метил-2пиразолин-5-онов к электронно-дефицитным бензилиденмалононитрилам в спиртах [102-104]. Конечные соединения получены с выходами 70-80%. Реакция проводится при нагревании в течение 4 ч. Однако при этом сначала необходимо дополнительно синтезировать бензилиденмалононитрил, и синтез в целом является двухстадийным. Согласно литературным данным, нейтральные условия проведения реакции необходимы для селективного получения 3-(5-гидрокси-3-метилпиразол-4-ил)-3-арилпропионитрилов 10. Использование основания в качестве катализатора данного процесса приводит к внутримолекулярной циклизации аддуктов Михаэля 10 в соответствующие 6-амино-1,4-дигидропирано[2,3-с]пиразолы 11 с выходами 70-90% (Схема 16) [103, 104].

72

Схема 16

Образование циклических соединений **11** наблюдается и в случае трехкомпонентной конденсации 3-метил-2-пиразолин-5-онов, бензальдегидов и малононитрила в присутствии основания [101]. Таким образом, до исследований автора в литературе не было известно ни одного примера мультикомпонентного подхода к соединениям **10**.

Нами также была предложена и изучена мультикомпонентная реакция бензальдегидов, 3-метил-2-пиразолин-5-онов и С-Н кислот при использовании ацетата натрия в качестве катализатора (Схема 17) [47].

Схема 17

соединений наблюдалась Полная конверсия исходных всех BO 86-99% 3-(5изученных экспериментах. Наилучшие выходы гидроксипиразол-4-ил)-3-арилпропионитрилов **10а-f,j-n** были достигнуты при проведении реакции в спиртах в течение 1 ч при температуре 20 °C. (Таблица 11). Единственным исключением была реакция бензальдегида 6а, малононитрила 8а и 3-метил-2-пиразолин-5-она 9а, в которой за 30 мин. [(5-гидрокси-3-метил-1*Н*-пиразол-4происходит образование ил)(фенил)метил]малононитрила 10а с выходом 83%, но за 1 ч в тех же условиях был выделен 6-амино-3-метил-4-фенил-1,4-дигидро[2,3-с]пиразол-5-карбонитрил 11 с выходом 86%. Проведение реакции в течение 30 мин. несколько снижает выходы конечных соединений в случае 10d,e,k, но и в этих случаях были достигнуты хорошие выходы 78-85% (Таблица 11).

\mathbb{R}^1	Х	\mathbb{R}^2	R ³	Время, мин.	Продукт	Выход, % ^[b]
Н	CN	Н	Et	30	10a	83
Н	CN	Н	Et	60	11	86
Н	CO ₂ Me	Н	Me	60	10b	90
Н	CO ₂ Et	Н	Et	60	10c	91
4-Me	CN	Н	Et	30	10d	81
4-Me	CN	Н	Et	60	10d	94
4-Cl	CN	Н	Et	30	10e	85
4-C1	CN	Н	Et	60	10e	97
3-Br	CN	Н	Et	60	10f	99
Н	CN	Ph	Et	60	10j	83
4-OMe	CN	Н	Et	30	10k	78
4-OMe	CN	Н	Et	60	10k	92
4-OMe	CO ₂ Me	Н	Me	60	10 l	91
4-Me	CO ₂ Me	Н	Me	60	10m	88
4-Cl	CO ₂ Me	Н	Me	60	10n	86

 Таблица 11.
 Химическая
 мультикомпонентная
 трансформация

 бензальдегидов
 6a,c,d,f-g,
 3-метил-2-пиразолин-5-онов
 9a,b
 и
 С-Н
 кислот

 8a-с
 в 3-(5-гидроксипиразол-4-ил)-3-арилпропионитрилы
 10a-f,j-n.
 10a-f,j-n.

[a] 10 ммоль бензальдегида **6**, 10 ммоль 3-метил-2-пиразолин-5-она **9**, 10 ммоль С-Н кислоты **8**, 1 ммоль NaOAc, 20 мл спирта, 20 °C.

[b] Выход выделенных соединений 10, 11.

Полученные 4-замещенные 3-метил-2-пиразолин-5-оны обладают антиконвульсивными, антидиабетическими и антигипергликемическими свойствами [105-107]. В настоящее время производные 4-замещенных 3-метил-2-пиразолин-5-онов, содержащие нитрильную группу, особенно замещенные 3-(5-гидрокси-3-метилпиразол-4-ил)-3-арилпропионитрилы, представляют особый интерес как сердечно-сосудистые препараты вследствие ингибирования фосфодиэстеразы-1 и -5 в кровеносных сосудах [108].

На следующем этапе диссертационной работы была изучена электрокаталитическая мультикомпонентная трансформация бензальдегидов **6а,с,d,f-h**, малононитрила и циклических 1,3-дикетонов **12а,b** в 5,6,7,8-тетрагидро-4*H*-хромены **13а-j** (Схема 18).

Схема 18

Условия данной были реакции оптимизированы примере на взаимодействия бензальдегида 6а, малононитрила и 1,3-циклогександиона 12a (Таблица 12). Было найдено, что проведение электролиза в бездиафрагменной ячейке при плотности тока $j = 4 \text{ мA/cm}^2$ (сила тока I = 20 мА, площадь электродов S = 5 см²) и температуре 20 °C обеспечивает оптимальные условия получения 2-амино-5-оксо-4-фенил-5,6,7,8-тетрагидро-4Н-хромен-3-карбонитрила 13а (выход по веществу 95%, выход по току 3170%). Увеличение плотности тока до $j = 10 \text{ мA/см}^2$ (I = 50 мA) уменьшало

выход **13а** как по веществу, так и по току, вероятно, в результате активации нежелательных прямых электрохимических процессов, приводящих к олигомеризации исходных соединений. Уменьшение плотности тока до 1 мА/см² также приводило к уменьшению выхода **13а** по веществу и по току, вероятно, из-за недостаточно эффективного инициирования каскадной реакции в этих условиях. Использование *n*-PrOH в качестве растворителя при электролизе бензальдегида **6а**, малононитрила и 1,3-циклогександиона **12а** позволяло получить наибольший выход 5,6,7,8-тетрагидро-4*H*-хромена **13а**, который выделяется простым фильтрованием и высушиванием осадка, выпавшего по завершении электролиза (Таблица 12).

Таблица 12. Электрокаталитическая мультикомпонентная трансформация бензальдегида **6a**, малононитрила и 1,3-циклогександиона **12a** в 5,6,7,8-тетрагидро-4*H*-хромен **13a**^[a].

Количество	Сила	Плотность		Browg	BUYOT	Выход
электричества,	тока,	тока,	Спирт	ыремя, мин	13 о % ^[b]	ПО
F /моль	мА	MA/cm^2		мин.	13a, 70	току, %
0.03	5	1	EtOH	100	67	2230
0.03	10	2	EtOH	50	73	2430
0.03	20	4	EtOH	25	87	2900
0.03	50	10	EtOH	10	76	2530
0.03	20	4	MeOH	25	74	2470
0.03	20	4	<i>n</i> -PrOH	25	95	3170

[а] 10 ммоль бензальдегида 6а, 10 ммоль малононитрила, 10 ммоль
 1,3-циклогександиона 12а, 1 ммоль NaBr, 20 мл спирта, Fe-катод,
 С-анод (5 см²), бездиафрагменная ячейка, 25 мин., 20 °С.

[b] Выход выделенного 5,6,7,8-тетрагидро-4*H*-хромена **13а**.

В найденных оптимальных условиях получены соответствующие 5,6,7,8-тетрагидро-4*H*-хромены **13а-ј** с выходом 85-95% по веществу и 2830-3170% по току за 25 мин. (Таблица 13).

Таблица 13. Электрокаталитическая мультикомпонентная трансформация бензальдегидов **6**, малононитрила и циклических 1,3-дикетонов **12** в 5,6,7,8-тетрагидро-4*H*-хромены **13**^[а].

\mathbb{R}^1	R ²	Количество электричества, F/моль	Продукт	Выход 13 , % ^[b]	Выход по току, %
Н	Н	0.03	13 a	95	3170
4-OMe	Н	0.03	13b	91	3030
4-Me	Н	0.03	13c	86	2870
4-Cl	Н	0.03	13d	85	2830
3-Br	Н	0.03	13e	93	3100
$4-NO_2$	Н	0.03	13f	87	2900
Н	Me	0.03	13g	84	2800
4-OMe	Me	0.03	13h	84	2800
3-Br	Me	0.03	13i	88	2930
4-NO ₂	Me	0.03	13j	85	2830

[а] 10 ммоль бензальдегида 6, 10 ммоль малононитрила, 10 ммоль циклического 1,3-дикетона 12, 1 ммоль NaBr, 20 мл *n*-PrOH, Fe-катод (5 см²), С-анод (5 см²), бездиафрагменная ячейка, 0.03 F/моль, *j* = 4 мА/см², 25 мин., 20 °C.

[b] Выход выделенных 5,6,7,8-тетрагидро-4*H*-хроменов 13.

На основании полученных результатов, а также данных, полученных ранее по механизмам электрокаталитической цепной циклизации

[12] тетрацианоциклопропанов эфиров 3-замещенных И 2,2-дицианоциклопропан-1,1-дикарбоновых [14], кислот предложен следующий электрокаталитической механизм мультикомпонентной 6. малононитрила трансформации бензальдегидов И циклических 1,3-дикетонов 12. В результате катодной реакции генерируется алкоксианион, который далее в растворе депротонирует малононитрил (Схема 19).

катод:
$$R^{3}OH + e \longrightarrow R^{3}O^{\Theta} + 1/2H_{2}$$

в растворе: $CH_{2}(CN)_{2} + R^{3}O^{\Theta} \longrightarrow CH(CN)_{2} + R^{3}OH$
Схема 19

Образующийся малононитрила анион взаимодействует с бензальдегидом 6 по типу конденсации Кневенагеля с образованием бензилиденмалононитрила (Схема 20) [87]. Аддукт вступает в реакцию 12. Последующая Михаэля с циклическим 1.3-дикетоном внитримолекулярная циклизация и таутомерное превращение приводят к конечным 5,6,7,8-тетрагидро-4*H*-хроменам **13**, и происходит регенерация который вступает следующий алкокси-аниона, В цикл каскадного взаимодействуя процесса, другой молекулой каталитического с малононитрила. В результате, для полной конверсии исходных соединений, теоретически, достаточно образования лишь одного алкоксильного аниона на катоде.

Схема 20

В известных в литературе методы синтеза 5,6,7,8-тетрагидро-4Нхроменов использованы как основные катализаторы [48-53], так и неосновные наноструктурированные и энзиматические катализаторы [58-60]. Их общим недостатком являются длительное время реакции, сложные катализаторы, синтез которых зачастую требует отдельной стадии, а также дополнительные процедуры по очистке конечных соединений. Также для мультикомпонентной бензальдегидов, реакции малононитрила И 1.3-дикетонов известен электрохимический циклических процесс С использованием растворимого Mg-анода [8]. Выход 5,6,7,8-тетрагидро-4Hхроменов составляет 89-96% по веществу, но только 30% по току (время электролиза 4-5 ч). Использование растворимого анода приводит к подщелачиванию реакционной среды. Кроме того, значительно усложняется выделение конечных соединений в связи с образованием значительных количеств нерастворимых окисей металлов.

Разработанная нами простая и эффективная электрокаталитическая система позволяет в мягких условиях осуществить мультикомпонентную бензальдегидов, трансформацию малононитрила И циклических 1,3-дикетонов в 5,6,7,8-тетрагидро-4*H*-хромены с высокими выходами. Несомненными преимуществами предложенного электрокаталитического процесса являются малое время проведения реакции (25 мин.), простое оборудование, использование бездиафрагменного электролизера, недорогих исходных реагентов, простое выделение конечных соединений, в результате эффективным И удобным получения чего OH является методом функционально замещенных 5,6,7,8-тетрагидро-4*H*-хроменов.

Полученные 5,6,7,8-тетрагидро-4*H*-хромены являются аналогами соединений с уже известной биологической активностью [84-86]. 5,6,7,8-тетрагидро-4*H*-хромены, содержащие нитрильную группу, особенно 2-амино-4-арил-5-оксо-5,6,7,8-тетрагидро-4*H*-хромен-3-карбонитрилы перспективны в лечении нейродегенеративных заболеваний человека [109].

2.2.4 Электрокаталитическая мультикомпонентная
 трансформация ароматических альдегидов, малононитрила и
 4-гидрокси-6-метил-2-пирона в пирано[4,3-b]пираны [21]

Электрокаталитическая мультикомпонентная трансформация ароматических альдегидов **6а,с,d,h,l-n**, малононитрила и 4-гидрокси-6-метил-2-пирона в бездиафрагменном электролизере приводит к пирано[4,3-*b*]пиранам **14а-g** (Схема 21).

Схема 21

Условия ланной реакции были оптимизированы на примере взаимодействия бензальдегида ба, малононитрила и 4-гидрокси-6-метил-2пирона (Таблица 14). Установлено, что наилучшие выходы 14а достигаются при плотности тока j = 50 мА/см² (сила тока I = 250 мА, площадь электродов S = 5 см²) и пропускании 0.1 F/моль электричества при 78 °C в течение 3 мин. в бездиафрагменной ячейке (выход по веществу 92%, выход по току 920%). Увеличение плотности тока до $i = 80 \text{ мA/см}^2$ (I = 400 мA) уменьшало выход 14а как по веществу, так и по току, вероятно, в результате активации приводящих побочных прямых электрохимических процессов, К олигомеризации исходных соединений. Уменьшение плотности тока до 4 мA/cm^2 также приводило к уменьшению выхода **14**а по веществу и по току, вероятно, из-за недостаточно эффективного инициирования каскадной реакции в этих условиях. Кроме того, уменьшение плотности тока приводит

Проведение увеличению времени электролиза. электролиза к при температуре 20 °С не обеспечивает полной конверсии исходных соединений. Использование EtOH В качестве растворителя при электролизе бензальдегида, малононитрила и 4-гидрокси-6-метил-2-пирона позволяет получить наибольший выход пирано[4,3-*b*]пирана **14a**, который выделяется простым фильтрованием осадка, выпавшего по завершении электролиза (Таблица 14).

Таблица 14. Электрокаталитическая мультикомпонентная трансформация бензальдегида **6a**, малононитрила и 4-гидрокси-6-метил-2-пирона в пирано[4,3-*b*]пиран **14a**.

Количество	Сила	Плотность		Т	Bnewg	Выход	Выход
электричества,	тока,	тока,	тока, Спирт		Бремя,	14a,	по току,
F /моль	мА	мА/см ²		C	мин.	% ^[b]	%
0.10	20	4	EtOH	20	40	3	30
0.10	20	4	EtOH	78	40	71	710
0.10	20	4	<i>n</i> -PrOH	80	40	59	590
0.10	20	4	MeOH	65	40	65	650
0.10	40	8	EtOH	78	20	75	750
0.10	100	20	EtOH	78	8.0	88	880
0.10	250	50	EtOH	78	3.0	92	920
0.10	400	80	EtOH	78	2.0	73	730
0.05	250	50	EtOH	78	1.5	58	1160
0.02	250	50	EtOH	78	0.6	33	1650

[а] 5 ммоль бензальдегида 6а, 5 ммоль малононитрила, 5 ммоль
 4-гидрокси-6-метил-2-пирона, 0.5 ммоль NaBr, 20 мл спирта, Fe-катод (5 см²), С-анод (5 см²), бездиафрагменная ячейка.

[b] Выход выделенного пирано[4,3-*b*]пирана 14а.

В найденных оптимальных условиях электролиз ароматических альдегидов **6а,с,d,h,l-n**, малононитрила и 4-гидрокси-6-метил-2-пирона в бездиафрагменной ячейке приводил к соответствующим пирано[4,3-*b*]пиранам **14а-g** с выходом 86-93% по веществу и 860-930% по току за 3 мин. (Таблица 15).

Таблица 15. Электрокаталитическая мультикомпонентная трансформация ароматических альдегидов **6а,с,d,h,l-n**, малононитрила и 4-гидрокси-6-метил-2-пирона в пирано[4,3-*b*]пираны **14а-g**^[а].

Альдегид	Ar	Количество электричества, F/моль	Продукт	Выход 14, % ^[b]	Выход по току, %
6a	Ph	0.1	14a	92	920
6c	4-MeOC ₆ H ₄	0.1	14b	91	910
6d	4-MeC ₆ H ₄	0.1	14c	86	860
6h	$4-O_2NC_6H_4$	0.1	14d	93	930
61	$4-BrC_6H_4$	0.1	14e	90	900
6m	3-пиридил	0.1	14f	89	890
6n	2-фурил	0.1	14g	87	870

[а] 5 ммоль ароматического альдегида 6, 5 ммоль малононитрила, 5 ммоль 4-гидрокси-6-метил-2-пирона, 20 мл ЕtOH, Fe-катод (5 см²), С-анод (5 см²), бездиафрагменная ячейка, 0.1 F/моль, *j* = 50 мА/см², 3 мин., 78 °C.
[b] Выход выделенных пирано[4,3-*b*]пиранов 14.

На основании полученных данных и данных по электрокаталитическим цепным процессам, изученным нами ранее [12, 14-17], был предложен следующий механизм для электрокаталитической мультикомпонентной трансформации ароматических альдегидов, малононитрила и 4-гидрокси-6метил-2-пирона. В результате реакции на катоде образуется этилат-анион, который далее в растворе депротонирует малононитрил (Схема 22).

Схема 22

Образующийся анион малононитрила вступает В конденсацию Кневенагеля с образованием бензилиденмалононитрила (Схема 23) [87], который вступает в реакцию Михаэля с 4-гидрокси-6-метил-2-пироном. Последующая внутримолекулярная циклизация и таутомерное превращение приводят к конечным пирано[4,3-b]пиранам 14, и происходит регенерация этилат-аниона, который вступает В следующий цикл каскадного взаимодействуя молекулой каталитического процесса, с другой малононитрила. В результате, для полной конверсии исходных соединений, теоретически, достаточно образования лишь одного этилат-аниона на катоде (Схема 23).

Схема 23

Известный в литературе мультикомпонентный синтез пирано[4,3-*b*]пиранов основан на взаимодействии бензальдегидов, малононитрила и 4-гидрокси-6-метил-2-пирона с использованием DBU в качестве основания [54]. Процесс проводился при кипячении в воде в течение 10-20 мин. Недостатком данного метода является использование дорогостоящего катализатора. Кроме того, описано лишь три примера соединений **14**.

Таким образом, нами был реализован мультикомпонентный электрокаталитический процесс получения функционально замещенных пирано[4,3-*b*]пиранов из ароматических альдегидов, малононитрила и 4-гидрокси-6-метил-2-пирона с выходом 86-93% по веществу и 860-930% по току.

Преимуществами электрокаталитического метода являются время проведения реакции – всего 3 мин., использование доступных реактивов, простого оборудования и бездиафрагменной ячейки. Конечные соединения кристаллизуются непосредственно из реакционной смеси и не требуют дополнительной очистки.

Полученные пирано[4,3-*b*]пираны обладают широким спектром биологической активности и известны как непептидные ингибиторы протеазы вируса иммунодефицита человека [110,111].

2.2.5 Электрокаталитическая мультикомпонентная трансформация ароматических альдегидов, 1-метил-4гидроксихинолин-2-она и С-Н кислот в пирано[3,2-с]хинолоны [22]

Электрокаталитическая мультикомпонентная трансформация ароматических альдегидов **6а,с,d,f,l-n**, 1-метил-4-гидроксихинолин-2-она и С-Н кислот **8а,b** приводит к соответствующим пирано[3,2-*c*]хинолонам **15а-ј** (Схема 24).

Схема 24

Для выяснения синтетического потенциала и определения оптимальных условий ее проведения было исследовано превращение бензальдегида **6a**, малононитрила и 1-метил-4-гидроксихинолин-2-она в пирано[3,2-*c*]хинолон **15a** (Таблица 16). Установлено, что наилучшие выходы **15a** достигаются при плотности тока j = 60 мА/см² (сила тока I = 300 мА, площадь электродов S = 5 см²) и пропускании 0.1 F/моль электричества при 78 °C в течение 3 мин. в бездифрагменной ячейке. Увеличение плотности тока до j = 80 мА/см² (I = 400 мA) уменьшало выход **15а** как по веществу, так и по току, вероятно, в результате активации побочных прямых электрохимических процессов, олигомеризации исходных соединений. приводящих к Уменьшение плотности тока до 4 мА/см² также приводило к уменьшению выхода 15а по веществу И по току. вероятно, из-за недостаточно эффективного инициирования каскадной реакции в этих условиях. Для данного процесса необходимо проведение электролиза при 78 °C, что связано с низкой растворимостью исходного 1-метил-4-гидроксихинолин-2-она. Конечный пирано[3,2-c]хинолон **15а** выпадал в осадок непосредственно из реакционной смеси и отфильтровывался в конце реакции.

Таблица 16. Электрокаталитическая мультикомпонентная трансформация бензальдегида **6a**, малононитрила **8a** и 1-метил-4-гидроксихинолин-2-она в пирано[3,2-*c*]хинолон **15a**^[a].

Количество электричества,	Сила тока,	Плотность тока,	Спирт	Время,	Выход	Выход по
F/моль	мА	MA/cM^2		МИН.	15a , % ¹⁰¹	току, %
0.1	20	4	EtOH	40	68	680
0.2	20	4	EtOH	80	85	850
0.1	40	8	EtOH	20	71	710
0.1	100	20	EtOH	8	75	750
0.1	200	40	EtOH	4	82	820
0.1	300	60	EtOH	3	97	970
0.1	400	80	EtOH	2	85	850

 [а] 5 ммоль бензальдегида 6а, 5 ммоль малононитрила, 5 ммоль 1-метил-4гидроксихинолин-2-она, 0.5 ммоль NaBr, 20 мл EtOH, Fe-катод (5 см²), С-анод (5 см²), бездиафрагменная ячейка, 78 °С.

[b] Выход выделенного пирано[3,2-*c*]хинолона 15а.

В разработанных оптимальных условиях в бездифрагменной ячейке был проведен совместный электролиз замещенных ароматических альдегидов **6а,с,d,f,l-n**, циано-функционализированных С-Н кислот **8а,b** и 1-метил-4-гидроксихинолин-2-она. Выходы пирано[3,2-*c*]хинолонов **15а-j** составляют 85-97% по веществу и 850-970% по току, а время электролиза – всего 3 мин. (Таблица 17).

Таблица 17. Электрокаталитическая мультикомпонентная трансформация ароматических альдегидов **6а,с,d,f,l-n**, 1-метил-4-гидроксихинолин-2-она и С-Н кислот **8а,b** в пирано[3,2-*c*]хинолоны **15а-j**^[а].

Ar	Х	Количество электричества, F/моль	Продукт	Выход 15, % ^[b]	Выход по току, %
C_6H_5	CN	0.1	15 a	97	970
4-MeOC ₆ H ₄	CN	0.1	15b	86	860
$4-\text{MeC}_6\text{H}_4$	CN	0.1	15c	87	870
$4-ClC_6H_4$	CN	0.1	15d	95	950
$4-BrC_6H_4$	CN	0.1	15e	89	890
3-пиридил	CN	0.1	15f	88	880
2-фурил	CN	0.1	15g	85	850
C_6H_5	CO ₂ Me	0.1	15h	88	880
$4-ClC_6H_4$	CO ₂ Me	0.1	15 i	91	910
3-пиридил	CO ₂ Me	0.1	15j	85	850

[а] 5 ммоль ароматического альдегида 6, 5 ммоль 1-метил-4-гидроксихинолин-2-она, 5 ммоль С-Н кислоты 8, 0.5 ммоль NaBr, 20 мл EtOH, Fe-катод (5 см²), С-анод (5 см²), бездиафрагменная ячейка, 0.1 F/моль, *j* = 60 мА/см², 3 мин., 78 °C.

[b] Выход выделенных пирано[3,2-*c*]хинолонов 15а-ј.

На основании полученных данных и данных по электрокаталитическим цепными процессам, изученным нами ранее [12, 14-17], был предложен следующий механизм для электрокаталитической мультикомпонентной трансформации ароматических альдегидов, 1-метил-4-гидроксихинолин-2она и С-Н кислот. В результате реакции на катоде образуется этилат-анион, который далее в растворе депротонирует циано-функционализированную С-Н кислоту (Схема 25).

катод: EtOH + e
$$\longrightarrow$$
 EtO + 1/2H₂
в растворе: CH₂(CN)X + EtO \longrightarrow CH(CN)X + EtOH
X = CN, CO₂Me

Схема 25

Образующийся C-H анион кислоты вступает В конденсацию Кневенагеля с образованием бензилиденмалононитрила или бензилиденцианоацетата (Схема 26) [87], которые вступают в реакцию 1-метил-4-гидроксихинолин-2-оном. Михаэля с Последующая внутримолекулярная циклизация и таутомерное превращение приводят к конечным пирано [3,2-с]хинолонам 15, и происходит регенерация этилатаниона, который вступает в следующий цикл каскадного каталитического взаимодействуя другой процесса, c молекулой цианофункционализированной С-Н кислоты. В результате, для полной конверсии исходных соединений, теоретически, достаточно образования лишь одного этилат-аниона на катоде (Схема 26).

Схема 26

Известные в литературе методы синтеза пирано[3,2-c]хинолонов основаны на мультикомпонентной реакции альдегидов, хинолин-2-онов и С-Н кислот в присутствии KF-Al₂O₃ [55], NEt₃ [56] или NH₄OAc [57]. Во всех случаях для достижения хороших выходов требуется длительное кипячение в этаноле (до 5 ч), а для очистки конечных соединений необходима дополнительная перекристаллизация. Следует отметить, что во всех случаях [55-57] использовались большие количества основных катализаторов: 80 мольных % [55], 450 мольных % [56] и 20 мольных % [57].

Таким образом, нами был реализован мультикомпонентный электрокаталитический процесс получения функционально замещенных пирано[3,2-*c*]хинолонов **15** из ароматических альдегидов, 1-метил-4-гидроксихинолин-2-она и С-Н кислот с выходом 85-97% по веществу и 850-970% по току.

Преимуществами электрокаталитического метода являются время проведения реакции – всего 3 мин., использование доступных реактивов, простого оборудования и бездиафрагменной ячейки. Конечные соединения

кристаллизуются непосредственно из реакционной смеси и не требуют дополнительной очистки.

Гетероциклическая пирано[3,2-c]хинолоновая система является широко распространенным структурным фрагментом в природных алкалоидах [112], обладающих противовоспалительной активностью и ингибирующих рост раковых клеток [113], в том числе устойчивых к большинству обычно применяемых лекарственных средств. Недавно установлено, что пирано[3,2-c]хинолоны в наномолярных концентрациях вызывают апоптоз в раковых клетках [56].

Глава 3. Экспериментальная часть

Температуры плавления измерены на аппарате Gallenkamp.

Спектры ЯМР ¹H, ¹³С и ³¹Р получены на приборах "Bruker WM-250", "Bruker AM-300" "Bruker Avance Π 300" В растворах И дейтеродиметилсульфоксида. Химические сдвиги в спектрах ЯМР приведены δ (м. д.) относительно TMC. Константы шкале спин-спинового взаимодействия Ј приводятся в Гц.

ИК-спектры сняты на спектрофотометрах "Specord M-82" или "Bruker ALPHA-T FT-IR". Использовалась прессовка с KBr. Частоты поглощения приведены в см⁻¹.

Масс-спектры (70 эВ) сняты на "Finningan MAT INCOS 50" спектрометре с прямым вводом образца.

Масс-спектры высокого разрешения (ионизация электрораспылением) сняты на "Bruker micrOTOF II" спектрометре. Внешняя и внутренняя калибровка осуществлена с помощью калибровочного раствора для ионизации электроспреем фирмы Fluka.

Элементный анализ выполнен в лаборатории микроанализа ИОХ РАН.

Электрокаталитические реакции проводили в бездиафрагменной ячейке, снабженной С-анодом (графитовый стержень) и Fe-катодом (стальная пластина, площадь электродов 5 см²) при перемешивании с помощью магнитной мешалки. В случае электролиза при нагревании дополнительно использовался обратный холодильник.

Исходные С-Н кислоты и реагенты – препараты фирм "Aldrich", "Fluka", "Merck", и "Acros".

Бромид, ацетат натрия – реактивы марки "ч".

3.1 Электрохимически инициированные каскадные и мультикомпонентные реакции салициловых альдегидов и С-Н кислот

3.1.1. Электрокаталитическая каскадная трансформация салициловых альдегидов и малононитрила в 2-амино-4Hхромен-3-карбонитрилы [15,20]

Общая методика проведения электрокаталитической каскадной трансформации салициловых альдегидов 1a-f и двух эквивалентов малононитрила в 2-амино-4H-хромен-3-карбонитрилы 2a-f: Раствор 10 ммоль салицилового альдегида **1а-f**, 20 ммоль малононитрила и 1 ммоль NaBr в 20 мл *n*-PrOH подвергали электролизу в бездиафрагменной ячейке, снабженной графитовым анодом и Fe-катодом (площадь электродов $S = 5 \text{ см}^2$), при комнатной температуре, перемешивании, и постоянной плотности тока j = 10 мА/см², пропуская 0.05 F/моль электричества. После окончания электролиза 4*H*-хромены 2a-f выделяли фильтрованием выпавшего осадка, который затем промывали на фильтре охлажденным 85% EtOH и сушили на воздухе.

(2-Амино-3-циано-4*H*-хромен-4-ил)малононитрил (2а): выход 95% (2.25 г); т. пл. 151–152 °С (лит. [61] 150–153 °С); ¹Н ЯМР (DMSO-*d*₆): 4.59 (д, *J* = 3.8 Гц, 1Н, СН), 5.08 (д, *J* = 3.8 Гц, 1Н,

СН), 7.14 (д, *J* = 8.2 Гц, 1H, Ph), 7.27 (т, *J*₁ = 7.5 Гц, *J*₂ = 7.5 Гц, 1H, Ph), 7.38-7.53 (м, 4H, NH₂+Ph).

(2-Амино-6-бром-3-циано-4*H*-хромен-4-ил)малононитрил (2b): выход 85% (2.68 г); т. пл. 160–161 °С; ¹Н ЯМР (DMSO- d_6): 4.65 (д, J = 3.8 Гц, 1H, CH), 5.15 (д, J = 3.8 Гц, 1H, CH), 7.12 (д, J = 8.7 Гц, 1H, Ph), 7.55-7.65 (м, 3H, NH₂+Ph), 7.73 (с, 1H, Ph); ¹³С ЯМР (DMSO-*d*₆): 32.3, 36.7, 48.5, 112.6, 112.8, 116.3, 118.5, 119.0, 120.3, 131.3, 132.8, 149.0, 163.2; MS (70 эВ): *m/z* (относительная интенсивность): 315 (0.2, [M]⁺), 248 (27), 221 (18), 170 (6), 143 (8), 114 (49), 88 (17), 66 (100), 50 (24), 38 (48); ИК (KBr): 3460, 3348, 2884, 2196, 1596, 1480, 1428, 1268, 1228, 1036 см⁻¹; С₁₃H₇BrN₄O; вычислено (%): C, 49.55; H, 2.24; Br, 25.36; N, 17.78; найдено (%): C, 49.43; H, 2.14; Br, 25.46; N, 17.70.

(2-Амино-6-нитро-3-циано-4*H*-хромен-4-ил)малононитрил (2c): выход 93% (2.62 г); т. пл. 169–170 °С; ¹Н ЯМР (DMSO*d*₆): 4.80 (д, *J* = 3.8 Гц, 1Н, CН), 5.22 (д, *J* = 3.8 Гц, 1Н, CН),

7.40 (д, J = 9.0 Гц, 1H, Ph), 7.78 (с, 2H, NH₂), 8.29 (д, J = 9.0 Гц, 1H, Ph), 8.51 (c, 1H, Ph); ${}^{13}C$ SMP (DMSO- d_6): 32.3, 36.7, 48.6, 112.5, 117.8, 118.6, 119.2, 125.1. 125.7, 143.8, 154.0, 162.6; MS (70 эВ): *m/z* (относительная интенсивность): 281 (0.1, [M]⁺), 215 (34), 185 (7), 158 (8), 142 (3), 114 (38), 88 (15), 66 (100), 50 (16), 38 (46); ИК (KBr): 3408, 3320, 2904, 2204, 1612, 1528, 1424, 1264, 1240, 1029 см⁻¹; С₁₃Н₇N₅O₃; вычислено (%): С, 55.52; Н, 2.51; N, 24.90; найдено (%): С, 55.43; Н, 2.61; N, 24.80.

(2-Амино-8-метокси-3-циано-4*H*-хромен-4-ил)малононитрил

(2d): выход 95% (2.53 г); т. пл. 173–174 °С (лит. [61] 173 °С); ¹Н 'NH₂ ЯМР (DMSO- d_6): 3.85 (с, 3H, OCH₃), 4.55 (д, J = 3.9 Гц, 1H, CH), 5.05 (д, J = 3.9 Гц, 1Н, CH), 7.02 (д, J = 7.3 Гц, 1Н, Ph), 7.10-7.25 (м, 2Н, Ph), 7.48 (c, 2H, NH₂).

(2-Амино-6-бром-8-метокси-3-циано-4*H*-хромен-4-ил)малононитрил (2е): выход 86% (2.97 г); т. пл. 166–167 °С; ¹Н ЯМР (DMSO- d_6): 3.85 (c, 3H, OCH₃), 4.56 (μ , $J = 3.8 \Gamma \mu$, 1H, CH),

5.09 (μ , $J = 3.8 \Gamma \mu$, 1H, CH), 7.23 (c, 1H, Ph), 7.30 (c, 1H, Ph), 7.57 (c, 2H, NH₂); ¹³C *SIMP* (DMSO- d_6): 32.2, 36.8, 48.5, 56.4, 112.7, 112.8, 115.8, 116.2, 119.0, 96

120.5, 122.0, 138.6, 148.0, 163.1; MS (70 эВ): *m/z* (относительная интенсивность): 345 (0.1, [M]⁺), 278 (97), 235 (11), 184 (17), 156 (9), 128 (31), 114 (6), 101 (27), 66 (100), 50 (31), 38 (41); ИК (КВг): 3436, 3336, 2908, 2196, 1596, 1528, 1432, 1268, 1220, 1092 см⁻¹; С₁₄Н₉BrN₄O₂; вычислено (%): С, 48.72; H, 2.63; Br, 23.15; N, 16.23; найдено (%): C, 48.64; H, 2.70; Br, 23.21; N, 16.16.

(3-Амино-2-циано-1*H*-бензо[*f*]хромен-4-ил)малононитрил

(2f): выход 91% (2.61 г); т. пл. 159–160 °С (лит. [61] 160 °С); ¹Н NH₂ ЯМР (DMSO-*d*₆): 5.03 (д, *J* = 3.6 Гц, 1Н, CH), 5.30 (д, *J* = 3.6 Гц, 1H, CH), 7.33 (д, J = 8.9 Гц, 1H, Ph), 7.50-7.75 (м, 4H, NH₂+Ph), 7.96-8.05 (м,

2H, Ph), 8.30 (д, *J* = 8.3 Гц, 1H, Ph).

трансформация 3.1.2. Электрокаталитическая каскадная салициловых альдегидов и циануксусных эфиров в 2-амино-4Нхромен-3-карбоксилаты [16,20]

Общая методика проведения электрокаталитической каскадной трансформации салициловых альдегидов 1a-d, f и двух эквивалентов *циануксусного эфира в 2-амино-4Н-хромен-3-карбоксилаты 4а-j*: Раствор 10 ммоль салицилового альдегида **1а-d, f**, 20 ммоль циануксусного эфира **За.b** и 1 ммоль NaBr в 20 мл EtOH подвергали электролизу в бездиафрагменной ячейке, снабженной графитовым анодом и Fe-катодом $S = 5 \text{ cm}^2$), электродов комнатной (площадь при температуре, перемешивании, и постоянной плотности тока i = 10 мA/см², пропуская 0.09 F/моль электричества. 4*H*-Хромены **4а-ј** выделяли упариванием раствора и кристаллизацией твердого остатка из 85% EtOH.

Метиловый эфир 2-амино-4-(2-метокси-2-оксо-1цианоэтил)-4*H*-хромен-3-карбоновой кислоты (4а):

получен в виде смеси диастереомеров в соотношении 2:1; выход 95% (2.87 г); т. пл. 121–123 °С (лит. [61] 120–122 °С); преобладающий диастереомер: ¹Н ЯМР (DMSO-*d*₆): 3.70 (с, 3H, OCH₃), 3.81 (с, 3H, OCH₃), 4.00 (д, J = 3.8 Гц, 1H, CH), 4.71 (д, J = 3.8 Гц, 1H, CH), 7.05-7.91 (м, 6H, NH₂+Ph); ¹³С ЯМР (DMSO-*d*₆): 36.3, 46.9, 50.8, 53.1, 71.2, 116.1, 116.3, 120.3, 124.6, 128.0, 129.4, 150.1, 162.6, 165.7, 167.7; минорный диастереомер: ¹Н ЯМР (DMSO-*d*₆): 3.68 (с, 3H, OCH₃), 3.77 (с, 3H, OCH₃), 3.95 (д, J = 3.5 Гц, 1H, CH), 4.62 (д, J = 3.5 Гц, 1H, CH), 7.05-7.91 (м, 6H, NH₂+Ph); ¹³С ЯМР (DMSO-*d*₆): 36.7, 47.3, 50.6, 52.9, 70.4, 115.8, 116.2, 121.7, 124.8, 128.1, 129.1, 150.0, 162.8, 165.5, 167.9.

Этиловый эфир 2-амино-4-(2-метокси-2-оксо-1-цианоэтил)-4*H*-хромен-3-карбоновой кислоты (4b): получен в виде

Метиловый эфир 2-амино-6-бром-4-(2-метокси-2-оксо-1цианоэтил)-4*H*-хромен-3-карбоновой кислоты (4с): получен в виде смеси диастереомеров в соотношении 3:2; выход 93% (3.47 г); т. пл. 159–160 °C; преобладающий диастереомер: ¹Н ЯМР (DMSO-*d*₆): 3.65 (с, 3H, OCH₃), 3.72 (с, 3H, OCH₃), 4.40 (д, J = 3.6 Гц, 1H, CH), 4.52 (д, J = 3.6 Гц, 1H, CH), 7.08 (д, J = 8.7 Гц, 1H, Ph), 7.18 (с, 1H, Ph), 7.57 (д, J = 8.7 Гц, 1H, Ph), 7.91 (с, 2H, NH₂); ¹³C ЯМР (DMSO-*d*₆): 36.0, 46.8, 50.9, 53.1, 70.7, 115.9, 116.2, 118.4, 124.2, 130.6, 132.2, 149.4, 162.2, 165.5, 167.5; минорный диастереомер: ¹Н ЯМР (DMSO-*d*₆): 3.57 (с, 3H, OCH₃), 3.62 (с, 3H, OCH₃), 4.26 (д, J = 3.0 Гц, 1H, CH), 4.55 (д, J = 3.0 Гц, 1H, Ph), 7.52 (д, J = 8.5 Гц, 1H, Ph), 7.62 (с, 1H, Ph), 7.89 (с, 2H, NH₂); ¹³C ЯМР (DMSO-*d*₆): 36.3, 47.0, 50.8, 53.0, 69.9, 116.0, 116.1, 118.1, 122.9, 131.4, 132.0, 149.3, 162.5, 165.5, 167.7; ИК (KBr): 3428, 3312, 2956, 2252, 1744, 1688, 1524, 1436, 1232, 1024 см⁻¹; C₁₅H₁₃BrN₂O₅; вычислено (%): C, 47.26; H, 3.44; Br, 20.96; N, 7.35; найдено (%): C, 47.13; H, 3.53; Br, 20.81; N, 7.19.

Этиловый эфир 2-амино-6-бром-4-(2-метокси-2-оксо-1цианоэтил)-4*H*-хромен-3-карбоновой кислоты (4d):

получен в виде смеси диастереомеров в соотношении 2:1;

выход 88% (3.61 г); т. пл. 107–108 °С (лит. [65] 104–105 °С); преобладающий диастереомер: ¹Н ЯМР (DMSO-*d*₆): 1.18 (т, *J* = 7.3 Гц, 3H, CH₃), 1.22 (т, *J* = 7.3 Гц, 3H, CH₃), 4.02-4.23 (м, 4H, две OCH₂), 4.37 (д, *J* = 3.8 Гц, 1H, CH), 4.54 (д, *J* = 3.8 Гц, 1H, CH), 7.08 (д, *J* = 8.6 Гц, 1H, Ph), 7.20 (с, 1H, Ph), 7.55 (д, *J* = 8.6 Гц, 1H, Ph), 7.84 (с, 2H, NH₂); минорный диастереомер: ¹Н ЯМР (DMSO-*d*₆): 1.12 (т, *J* = 7.3 Гц, 3H, CH₃), 1.24 (т, *J* = 7.3 Гц, 3H, CH₃), 4.02-4.23 (м, 5H, две OCH₂ и CH), 4.53 (д, *J* = 3.0 Гц, 1H, CH), 7.02 (д, *J* = 8.4 Гц, 1H, Ph), 7.55 (д, *J* = 8.4 Гц, 1H, Ph), 7.62 (с, 1H, Ph), 7.89 (с, 2H, NH₂).

Метиловый эфир 2-амино-4-(2-метокси-2-оксо-1цианоэтил)-6-нитро-4*H*-хромен-3-карбоновой кислоты (4e): получен в виде смеси диастереомеров в соотношении

3:2; выход 85% (2.95 г); т. пл. 155–156 °С (лит. [69] 156 °С); преобладающий

диастереомер: ¹Н ЯМР (DMSO-*d*₆): 3.70 (с, 3H, OCH₃), 3.75 (с, 3H, OCH₃), 4.48 (д, J = 3.7 Гц, 1H, CH), 4.67 (д, J = 3.7 Гц, 1H, CH), 7.33 (д, J = 8.9 Гц, 1H, Ph), 7.91 (с, 3H, NH₂+Ph), 8.20 (д, J = 8.9 Гц, 1H, Ph); ¹³C ЯМР (DMSO-*d*₆): 36.1, 46.6, 50.9, 53.2, 70.5, 115.8, 117.4, 121.6, 124.1, 125.1, 143.4, 154.5, 161.5, 165.4, 167.2; минорный диастереомер: ¹Н ЯМР (DMSO-*d*₆): 3.65 (с, 3H, OCH₃), 3.78 (с, 3H, OCH₃), 4.32 (д, J = 3.7 Гц, 1H, CH), 4.65 (д, J = 3.7 Гц, 1H, CH), 7.30 (д, J = 8.9 Гц, 1H, Ph), 7.91 (с, 3H, NH₂+Ph), 8.25 (д, J = 8.9 Гц, 1H, Ph); ¹³C ЯМР (DMSO-*d*₆): 36.0, 46.6, 50.8, 53.0, 69.9, 115.9, 117.5, 122.9, 124.1, 124.9, 143.7, 154.4, 161.7, 165.2, 167.4.

Этиловый эфир 2-амино-4-(2-метокси-2-оксо-1цианоэтил)-6-нитро-4*H*-хромен-3-карбоновой кислоты (4f): получен в виде смеси диастереомеров в соотношении

5:2; выход 87% (3.27 г); т пл. 134–135 °С; преобладающий диастереомер: ¹Н ЯМР (DMSO-*d*₆): 1.23 (т, *J* = 7.3 Гц, 3H, CH₃), 1.28 (т, *J* = 7.3 Гц, 3H, CH₃), 4.05-4.27 (м, 4H, две OCH₂), 4.47 (д, *J* = 3.7 Гц, 1H, CH), 4.75 (д, *J* = 3.7 Гц, 1H, CH), 7.39 (д, *J* = 9.1 Гц, 1H, Ph), 7.93 (с, 2H, NH₂), 8.02 (с, 1H, Ph), 8.28 (д, *J* = 9.1 Гц, 1H, Ph); ¹³C ЯМР (DMSO-*d*₆): 13.8, 14.2, 36.0, 46.9, 59.5, 62.5, 70.7, 116.0, 117.6, 121.8, 124.2, 125.3, 143.4, 154.6, 161.5, 165.0, 166.9; минорный диастереомер: ¹Н ЯМР (DMSO-*d*₆): 1.07 (т, *J* = 7.3 Гц, 3H, CH₃), 1.16 (т, *J* = 7.3 Гц, 3H, CH₃), 4.05-4.27 (м, 4H, две OCH₂), 4.33 (д, *J* = 3.0 Гц, 1H, CH), 4.74 (д, *J* = 3.0 Гц, 1H, CH), 7.34 (д, *J* = 8.5 Гц, 1H, Ph), 7.91 (с, 2H, NH₂), 8.26 (д, *J* = 8.5 Гц, 1H, Ph), 8.41 (с, 1H, Ph); ИК (KBr): 3428, 3316, 2992, 2260, 1740, 1692, 1520, 1472, 1228, 1040 см⁻¹; C₁₇H₁₇N₃O₇; вычислено (%): C, 54.40; H, 4.57; N, 11.20; найдено (%): C, 54.26; H, 4.62; N, 11.07.

Метиловый эфир 2-амино-4-(2-метокси-2-оксо-1цианоэтил)-8-метокси-4*H*-хромен-3-карбоновой кислоты (4g): получен в виде смеси диастереомеров в соотношении

2:1; выход 84% (2.80 г); т. пл. 156–157 °С (лит. [61] 150–153 °С);

преобладающий диастереомер: ¹Н ЯМР (DMSO-*d*₆): 3.67 (с, 3H, OCH₃), 3.71 (с, 3H, OCH₃), 3.81 (с, 3H, OCH₃), 4.38 (д, J = 3.8 Гц, 1H, CH), 4.50 (д, J = 3.8 Гц, 1H, CH), 6.56 (д, J = 8.8 Гц, 1H, Ph), 7.00-7.18 (м, 2H, Ph), 7.88 (с, 2H, NH₂); ¹³C ЯМР (DMSO-*d*₆): 36.4, 46.9, 50.8, 53.0, 55.7, 71.0, 112.1, 116.1, 118.9, 121.1, 124.5, 139.4, 147.2, 162.6, 165.6, 167.7; минорный диастереомер: ¹H ЯМР (DMSO-*d*₆): 3.57 (с, 3H, OCH₃), 3.65 (с, 3H, OCH₃), 3.80 (с, 3H, OCH₃), 4.14 (д, J = 3.7 Гц, 1H, CH), 4.51 (д, J = 3.7 Гц, 1H, CH), 6.91 (д, J = 8.8 Гц, 1H, Ph), 7.00-7.18 (м, 2H, Ar), 7.90 (с, 2H, NH₂); ¹³C ЯМР (DMSO-*d*₆): 36.8, 47.3, 50.7, 52.9, 55.8, 70.3, 111.8, 116.2, 119.6, 122.7, 124.7, 139.3, 147.0, 162.8, 165.5, 167.9.

Этиловый эфир 2-амино-4-(2-метокси-2-оксо-1-цианоэтил)-8-метокси-4*H*-хромен-3-карбоновой кислоты (4h): получен в

Виде смеси двух диастереомеров в соотношении 2:1; выход 89% (3.21 г); т. пл. 125–126 °С (лит. [65] 126–127 °С); преобладающий диастереомер: ¹Н ЯМР (DMSO-*d*₆): 1.17 (т, *J* = 7.3 Гц, 3H, CH₃), 1.20 (т, *J* = 7.3 Гц, 3H, CH₃), 3.81 (с, 3H, OCH₃), 3.98-4.21 (м, 4H, две OCH₂), 4.30 (д, *J* = 3.7 Гц, 1H, CH), 4.52 (д, *J* = 3.7 Гц, 1H, CH), 6.59 (д, *J* = 8.6 Гц, 1H, Ph), 7.00-7.18 (м, 2H, Ph), 7.85 (с, 2H, NH₂); ¹³С ЯМР (DMSO-*d*₆): 13.8, 14.3, 36.5, 47.0, 55.7, 59.2, 62.1, 71.2, 112.0, 116.2, 119.0, 121.2, 124.4, 139.4, 147.2, 162.6, 165.1, 167.4; минорный диастереомер: ¹Н ЯМР (DMSO-*d*₆): 1.10 (т, *J* = 7.3 Гц, 3H, CH₃), 1.21 (т, *J* = 7.3 Гц, 3H, CH₃), 3.81 (с, 3H, OCH₃), 3.98-4.21 (м, 5H, две OCH₂ и CH), 4.50 (д, *J* = 3.7 Гц, 1H, CH), 6.93 (д, *J* = 8.8 Гц, 1H, Ph), 7.00-7.18 (м, 2H, Ph), 7.85 (с, 2H, NH₂); ¹³С ЯМР (DMSO-*d*₆): 13.5, 14.2, 36.7, 46.4, 55.7, 59.1, 61.9, 71.1, 111.7, 116.6, 119.6, 122.3, 139.2, 147.0, 162.5, 165.0, 167.5.

Метиловый эфир 3-амино-1-(2-метокси-2-оксо-1цианоэтил)-1*H*-бензо[*f*]хромен-2-карбоновой кислоты

(4i): получен в виде смеси двух диастереомеров в соотношении 7:2; выход 85% (3.00 г); т. пл. 150–152 °С; преобладающий

диастереомер: ¹Н ЯМР (DMSO-*d*₆): 3.64 (с, 3H, OCH₃), 3.82 (с, 3H, OCH₃), 4.23 (д, J = 2.0 Гц, 1H, CH), 5.20 (д, J = 2.0 Гц, 1H, CH), 7.35 (д, J = 9.2 Гц, 1H, Ar), 7.52-8.08 (м, 7H, NH₂+Ar); ¹³C ЯМР (DMSO-*d*₆): 33.7, 46.8, 50.9, 53.2, 70.3, 114.5, 116.0, 116.6, 121.5, 125.4, 128.2, 129.3, 130.1, 130.3, 148.0, 162.9, 165.9, 168.0; минорный диастереомер: ¹Н ЯМР (DMSO-*d*₆): 3.47 (с, 3H, OCH₃), 3.75 (с, 3H, OCH₃), 4.31 (д, J = 3.7 Гц, 1H, CH), 5.24 (д, J = 3.7 Гц, 1H, CH), 7.52-8.08 (м, 8H, NH₂+Ar); ¹³C ЯМР (DMSO-*d*₆): 33.2, 46.1, 50.8, 52.9, 72.3, 114.0, 116.4, 116.7, 122.1, 125.2, 127.4, 128.9, 130.2, 130.4, 130.6, 148.8, 162.8, 165.7, 167.7; ИК (KBr): 3468, 3316, 2956, 2252, 1744, 1684, 1520, 1444, 1220, 1080 см⁻¹; C₁₉H₁₆N₂O₅; вычислено (%): C, 64.77; H, 4.58; N, 7.95; найдено (%): C, 64.61; H, 4.53; N, 7.81.

Этиловый эфир З-амино-1-(2-метокси-2-оксо-1цианоэтил)-1*H*-бензо[*f*]хромен-2-карбоновой кислоты (4j):

получен в виде смеси двух диастереомеров в соотношении 2:1; выход 83% (3.16 г); т. пл. 127–128 °C; преобладающий диастереомер: ¹Н ЯМР (DMSO-*d*₆): 1.26 (т, *J* = 7.3 Гц, 3H, CH₃), 1.29 (т, *J* = 7.3 Гц, 3H, CH₃), 3.85-4.28 (м, 5H, две OCH₂ и CH), 5.22 (д, *J* = 1.8 Гц, 1H, CH), 7.34 (д, *J* = 9.2 Гц, 1H, Ar), 7.50-8.10 (м, 7H, NH₂+Ar); ¹³C ЯМР (DMSO-*d*₆): 13.9, 14.4, 33.5, 46.7, 59.2, 62.1, 71.0, 114.8, 116.1, 116.6, 121.6, 125.3, 128.1, 128.9, 129.1, 130.1, 130.9, 147.9, 162.8, 165.3, 167.6; минорный диастереомер: ¹Н ЯМР (DMSO-*d*₆): 0.99 (т, *J* = 7.3 Гц, 3H, CH₃), 1.34 (т, *J* = 7.3 Гц, 3H, CH₃), 3.85-4.28 (м, 5H, две OCH₂ и CH), 5.25 (д, *J* = 3.7 Гц, 1H, CH), 7.50-8.10 (м, 8H, NH₂+Ar); ¹³C ЯМР (DMSO-*d*₆): 13.3, 14.3, 33.2, 46.2, 59.3, 62.0, 72.3, 114.1, 116.5, 116.7, 122.1, 125.1, 127.3, 128.8, 129.3, 130.0, 130.6, 148.7, 162.6, 165.2, 167.4; ИК (KBr): 3456, 3328, 2976, 2256, 1740, 1676, 1516, 1464, 1228, 1076 см⁻¹; C₂₁H₂₀N₂O₅; вычислено (%): C, 66.31; H, 5.30; N, 7.36; найдено (%): C, 66.19; H, 5.37; N, 7.18.

3.1.3. Электрокаталитическая мультикомпонентная трансформация салициловых альдегидов, малононитрила и триэтилфосфита в (2-амино-4H-хромен-4-ил)фосфонаты [23]

Общая методика проведения электрокаталитической мультикомпонентной трансформации салициловых альдегидов 1a,b,d,f-i триэтилфосфита (2-амино-4Н-хромен-4малононитрила U в ил)фосфонаты 5a-g: Раствор 5 ммоль салицилового альдегида 1a,b,d,f-i, 5 ммоль малононитрила, 5 ммоль триэтилфосфита и 0.5 ммоль NaBr в 20 мл ЕtOH подвергали электролизу в бездиафрагменной ячейке, снабженной графитовым анодом и Fe-катодом (площадь электродов S = 5 см²), при 78 °C, перемешивании, и постоянной плотности тока $j = 20 \text{ мA/cm}^2$, пропуская 0.1 F/моль электричества. 4*H*-Хромены **5а-g** выделяли упариванием раствора и перекристаллизацией твердого остатка из 85% EtOH.

Диэтил (2-амино-3-циано-4*H*-хромен-4-ил) фосфонат (5а): выход 93% (1.43 г); т. пл. 143–145 °С (лит. [71] 143–145 °С); ¹Н ЯМР (DMSO-*d*₆): 1.13 (т, *J* = 7.0 Гц, 3H, CH₃), 1.19 (т, *J* = 7.0 Гц,

3H, CH₃), 3.86-4.00 (м, 4H, две OCH₂), 4.08 (д, ²*J*_{PH} = 17.8 Гц, 1H, CH), 7.01 (д, *J* = 8.0 Гц, 1H, Ph), 7.12 (с, 2H, NH₂), 7.15-7.18 (м, 1H, Ph), 7.26-7.32 (м, 2H, Ph).

Диэтил (2-амино-6-бром-3-циано-4*H*-хромен-4ил)фосфонат (5b): выход 89% (1.73 г); т. пл. 177–179 °С (лит. [71] 178–180 °С); ¹Н ЯМР (DMSO-*d*₆): 1.14-1.24 (м, 6H, 2CH₃),

3.92-4.04 (м, 4H, две ОСН₂), 4.19 (д, ²*J*_{PH} = 18.2 Гц, 1H, CH), 7.01 (д, *J* = 8.5 Гц, 1H, Ph), 7.22 (с, 2H, NH₂), 7.45-7.49 (м, 2H, Ph).

Диэтил (2-амино-3-циано-8-метокси-4*H*-хромен-4ил)фосфонат (5с): выход 91% (1.54 г); т. пл. 187–188 °С; ¹Н ЯМР (DMSO-*d*₆): 1.14-1.23 (м, 6H, 2CH₃), 3.82 (с, 3H, OCH₃), 3.91-4.00 (м, 4H, две OCH₂), 4.05 (д, ²*J*_{PH} = 17.7 Гц, 1H, CH), 6.83

(д, J = 7.3 Гц, 1H, Ph), 7.02 (д, J = 8.0 Гц, 1H, Ph), 7.07-7.12 (м, 1H, Ph), 7.15 (с, 2H, NH₂); ¹³С ЯМР (DMSO- d_6): 16.2, 16.3, 34.9 (д, ¹ $J_{CP} = 145.8$ Гц), 47.5 (д, ² $J_{CP} = 7.5$ Гц), 55.8, 62.2 (д, ² $J_{CP} = 7.2$ Гц), 62.3 (д, ² $J_{CP} = 7.4$ Гц), 111.8, 118.8, 120.1, 120.8, 124.0, 139.4, 147.2, 162.7; ³¹Р ЯМР (DMSO- d_6): 25.23; ИК (KBr): 3422, 3170, 2983, 2189, 1638, 1580, 1487, 1410, 1274, 1211 см⁻¹; ESI-HRMS (масс-спектрометрия высокого разрешения с ионизацией электрораспылением): вычислено для C₁₅H₂₀N₂O₅P: 339.1110; найдено 339.1105 [M+H]⁺.

Диэтил (2-амино-3-циано-6-метил-4*H*-хромен-4ил)фосфонат (5d): выход 90% (1.50 г); т. пл. 180–182 °С (лит. [71] 180–182 °С); ¹Н ЯМР (DMSO-*d*₆): 1.15 (т, *J* = 7.2 Гц,

3H, CH₃), 1.20 (т, *J* = 7.2 Гц, 3H, CH₃), 2.27 (с, 3H, CH₃), 3.88-3.96 (м, 4H, две OCH₂), 4.02 (д, ²*J*_{PH} = 18.2 Гц, 1H, CH), 6.91 (д, *J* = 8.2 Гц, 1H, Ph), 7.07-7.10 (м, 4H, NH₂+Ph).

Диэтил

(2-амино-6-хлор-3-циано-4Н-хромен-4-

ил)фосфонат (5е): выход 88% (1.51 г); т. пл. 177–178 °С (лит. [73] 176–178 °С); ¹Н ЯМР (DMSO-*d*₆): 1.16 (т, *J* = 7.3 Гц, 3Н,

CH₃), 1.21 (т, *J* = 7.3 Гц, 3H, CH₃), 3.91-4.04 (м, 4H, две OCH₂), 4.19 (д, ²*J*_{PH} = 18.2 Гц, 1H, CH), 7.07 (д, *J* = 8.6 Гц, 1H, Ph), 7.23 (с, 2H, NH₂), 7.32-7.37 (м, 4H, Ph).

Е to, **р**, **О E t С N** NH₂); ¹³С ЯМР (DMSO-*d*₆): 14.7, 16.2, 16.3, 34.9 (д, ¹*J*_{CP} = 145.7 Гц), 47.6 (д, ²*J*_{CP} = 7.5 Гц), 62.2 (д, ²*J*_{CP} = 7.1 Гц), 62.3 (д, ²*J*_{CP} = 7.3 Гц), 64.4, 113.2, 118.8, 120.1, 120.8, 124.0, 139.8, 146.3, 162.6; ³¹Р ЯМР (DMSO-*d*₆): 25.24; ИК (KBr): 3445, 3172, 2984, 2188, 1637, 1580, 1479, 1403, 1277, 1207 см⁻¹; ESI-HRMS (масс-спектрометрия высокого разрешения с ионизацией электрораспылением): вычислено для $C_{16}H_{22}N_2O_5P$: 353.1266; найдено 353.1261 [M+H]⁺.

Диэтил (3-амино-2-циано-1*H***-бензо[***f***]хромен-4-ил)фосфонат (5g): выход 90% (1.61 г); т. пл. 221–223 °С (лит. [71] 220–222 °С); ¹Н ЯМР (DMSO-***d***₆): 1.03-1.12 (м, 6H, 2CH₃), 3.75-3.92 (м,**

4H, две ОСН₂), 4.76 (д, ²*J*_{PH} = 16.4 Гц, 1H, CH), 7.23-7.27 (м, 3H, NH₂+Ar), 7.48-7.53 (м, 1H, Ar), 7.56-7.61 (м, 1H, Ar), 7.93 (д, *J* = 7.8 Гц, 2H, Ar), 8.17 (д, *J* = 8.4 Гц, 1H, Ar).

3.2 Электрохимически инициированные каскадные и мультикомпонентные реакции бензальдегидов и С-Н кислот

3.2.1 Электрокаталитическая каскадная трансформация бензальдегидов и 3-метил-1-фенил-2-пиразолин-5-она в замещенные 4,4'-(арилметилен)бис(1H-пиразол-5-олы) [18]

Общая методика проведения электрокаталитической каскадной трансформации бензальдегидов ба-h и 3-метил-1-фенил-2-пиразолин-5она в замещенные 4,4'-(арилметилен)бис(1H-пиразол-5-олы) 7а-h: Раствор 10 ммоль бензальдегида ба-h, 20 ммоль 3-метил-1-фенил-2-пиразолин-5-она и 1 ммоль NaBr в 20 мл EtOH подвергали электролизу в бездиафрагменной 105 ячейке, снабженной графитовым анодом и Fe-катодом (площадь электродов $S = 5 \text{ см}^2$), при 20 °C, перемешивании, и постоянной плотности тока $j = 4 \text{ мA/см}^2$, пропуская 0.04 F/моль электричества. По окончании электролиза осадок отделяли фильтрованием, промывали холодным этанолом (3 мл) и высушивали.

4,4'-(Фенилметилен)бис(3-метил-1-фенил-1*Н*-пиразол-5-

ол) (7а): выход 82% (3.58 г); т. пл. 166–167 °С (лит. [45] 166–167 °С); ¹Н ЯМР (DMSO-*d*₆): 2.33 (с, 6Н, 2СН₃), 4.97 (с, 1Н, СН), 7.15-7.29 (м, 7Н, Рh), 7.44 (т, *J* = 7.9 Гц, 4Н, Ph),

^{7.72 (}д, *J* = 7.6 Гц, 4H, Ph).

4,4'-[(2-Гидроксифенил)метилен)]бис(3-метил-1-фенил-1*Н*-пиразол-5-ол) (7b): выход 86% (3.89 г); т. пл. 230-231 °С

(лит. [34] 227–229 °C); ¹Н ЯМР (DMSO-*d*₆): 2.28 (с, 6H, 2CH₃), 5.16 (с, 1H, CH), 6.66-6.75 (м, 2H, Ph), 6.97 (т, *J* = 7.7

Гц, 1H, Ph), 7.22 (т, J = 7.2 Гц, 2H, Ph), 7.42 (т, J = 7.7 Гц, 4H, Ph), 7.55 (д, J = 7.2 Гц, 1H, Ph), 7.69 (д, J = 8.1 Гц, 4H, Ph); ¹³C ЯМР (DMSO- d_6): 11.8 (2C), 27.3, 104.5 (2C), 114.9, 118.6, 120.6 (4C), 125.5 (2C), 126.9, 128.8, 128.9 (4C), 129.3, 137.5 (2C), 146.3 (2C), 153.9, 157.5 (2C); MS (70 эВ): m/z (относительная интенсивность): 452 (0.2, [M]⁺), 278 (5), 174 (34), 144 (8), 115 (18), 105 (22), 91 (69), 77 (100), 64 (20), 51 (52); ИК (KBr): 3064, 2920, 2830, 1606, 1576, 1500, 1456, 1228, 752, 688 см⁻¹; C₂₇H₂₄N₄O₃; вычислено (%): C, 71.67; H, 5.35; N, 12.28; найдено (%): C, 71.60; H, 5.49; N, 12.16.

4,4'-[(4-Метоксифенил)метилен)]бис(3-метил-1-фенил-

1*Н*-пиразол-5-ол) (7с): выход 92% (4.29 г); т. пл. 176–177 °С (лит. [38] 173–175 °С); ¹Н ЯМР (DMSO-*d*₆): 2.12 (с, 6H, 2CH₃), 3.72 (с, 3H, OCH₃), 4.73 (с, 1H, CH), 6.77 (д, *J* = 8.7

Гц, 2H, Ph), 7.08-7.12 (м, 4H, Ph), 7.21-7.28 (м, 4H, Ph), 7.54 (д, J = 7.9 Гц, 4H,

Ph); ¹³С ЯМР (DMSO-*d*₆): 11.6 (2С), 32.4, 54.9, 105.0 (2С), 113.5 (2С), 120.4 (4С), 125.4 (2С), 128.1 (2С), 128.9 (4С), 129.2 (2С), 134.6, 137.9 (2С), 146.1 (2С), 157.5; *m/z* (относительная интенсивность): 466 (0.2, [M]⁺), 292 (100), 291 (30), 185 (17), 174 (32), 115 (20), 105 (12), 91 (28), 77 (76), 51 (49); ИК (КВг): 3060, 2920, 2836, 1604, 1580, 1404, 1252, 1036, 752, 692 см⁻¹; C₂₈H₂₆N₄O₃; вычислено (%): C, 72.09; H, 5.62; N, 12.01; найдено (%): C, 72.01; H, 5.79; N, 11.78.

4,4'-[(4-Метилфенил)метилен)]бис(3-метил-1-фенил-1*H*-

пиразол-5-ол) (7d): выход 92% (4.14 г); т. пл. 204–205 °С (лит. [45] 203–204 °С); ¹Н ЯМР (DMSO-*d*₆): 2.31 (с, 6H, 2CH₃), 2.51 (с, 3H, CH₃), 4.91 (с, 1H, CH), 7.06-7.27 (м, 6H,

Ph), 7.44 (т, *J* = 7.6 Гц, 4H, Ph), 7.72 (д, *J* = 7.9 Гц, 4H, Ph).

4,4'-[(2-Хлорфенил)метилен)]бис(3-метил-1-фенил-1Н-

пиразол-5-ол) (7е): выход 80% (3.76 г); т. пл. 234–235 °С (лит. [45] 236–237 °С); ¹Н ЯМР (DMSO-*d*₆): 2.08 (с, 6H, 2CH₃), 5.04 (с, 1H, CH), 7.00-7.19 (м, 8H, Ph), 7.24 (д, *J* = 6.6

Гц, 1H, Ph), 7.38 (д, *J* = 7.9 Гц, 4H, Ph), 7.79 (д, *J* = 7.8 Гц, 1H, Ph).

4,4'-[(4-Хлорфенил)метилен)]бис(3-метил-1-фенил-1Н-

пиразол-5-ол) (7f): выход 94% (4.41 г); т. пл. 215–216 °C (лит. [45] 207–209 °C); ¹Н ЯМР (DMSO-*d*₆): 2.30 (с, 6H, 2CH₃), 4.95 (с, 1H, CH), 7.20-7.34 (м, 6H, Ph), 7.42 (т, *J* = 7.8

Гц, 4H, Ph), 7.69 (д, J = 7.6 Гц, 4H, Ph); ¹³С ЯМР (DMSO- d_6): 11.6 (2C), 32.5, 104.4 (2C), 120.6 (4C), 125.6 (2C), 128.0 (2C), 128.9 (4C), 129.2 (2C), 130.6, 137.3 (2C), 141.2, 146.3 (2C), 157.0 (2C); m/z (относительная интенсивность): 471 (0.2, [M]⁺), 296 (5), 185 (15), 174 (20), 128 (13), 105 (15), 91 (50), 77 (100), 64 (17), 51 (44); ИК (KBr): 3044, 2976, 2920, 1604, 1580, 1408. 1296, 1088, 748, 692 см⁻¹; C₂₇H₂₃ClN₄O₂; вычислено (%): C, 68.86; H, 4.92; Cl, 7.53; N, 11.90; найдено (%): C, 68.75; H, 5.01; Cl, 7.66; N, 11.74.

4,4'-[(3-Бромфенил)метилен)]бис(3-метил-1-фенил-1*H***-пиразол-5-ол) (7g):** выход 96% (4.93 г); т. пл. 166–168 °С; ¹Н ЯМР (DMSO-*d*₆): 2.05 (с, 6H, 2CH₃), 4.70 (с, 1H, CH), 7.05-7.15 (м, 4H, Ph), 7.17-7.32 (м, 6H, Ph), 7.52 (д, *J* = 7.7 Гц, 4H,

Ph); ¹³С ЯМР (DMSO-*d*₆): 11.9 (2C), 33.3, 104.6 (2C), 120.9 (4C), 121.9, 125.9 (2C), 126.8, 129.2 (4C), 130.2 (2C), 130.6, 137.6 (2C), 145.5, 146.6 (2C), 157.4 (2C); *m/z* (относительная интенсивность): 516 (0.2, [M]⁺), 514 (0.1, [M]⁺), 340 (27), 185 (95), 174 (80), 128 (37), 105 (40), 91 (93), 77 (100), 51 (45); ИК (KBr): 3056, 2972, 2800, 1608, 1580, 1412, 1272, 1052, 756, 664 см⁻¹; C₂₇H₂₃BrN₄O₂; вычислено (%): C, 62.92; H, 4.69; Br, 15.50; N, 10.87; найдено (%): C, 62.85; H, 4.69; Br, 15.63; N, 10.80.

4,4'-[(4-Нитрофенил)метилен)]бис(3-метил-1-фенил-1*H***пиразол-5-ол) (7h): выход 92% (4.43 г); т. пл. 224–226 °С (лит. [34] 225–227 °С); ¹Н ЯМР (DMSO-***d***₆): 2.35 (с, 6H, 2CH₃), 5.13 (с, 1H, CH), 7.23-7.29 (м, 2H, Ph), 7.42-7.55 (м, 6H, Ph), 7.71 (д, J = 7.7 Гц, 4H, Ph), 8.17 (д, J = 8.6 Гц, 2H, Ph); ¹³С ЯМР (DMSO-***d***₆): 11.6 (2C), 33.2, 105.0 (2C), 120.6 (4C), 123.3 (2C), 125.7 (2C), 128.6 (2C), 128.9 (4C), 137.3 (2C), 145.9, 146.2, 150.4 (2C), 157.5 (2C);** *m/z* **(относительная интенсивность): 481 (0.1, [M]⁺), 307 (61), 185 (83), 174 (68), 128 (19), 115 (12), 105 (47), 91 (80), 77 (100), 51 (79); ИК (КВг): 3056, 2972, 2920, 1604, 1580, 1348, 1108, 756, 740 см⁻¹; C₂₇H₂₃BrN₅O₄; вычислено (%): C, 67.35; H, 4.81; N, 14.54; найдено (%): C, 67.25; H, 4.99; N, 14.36.**
3.2.2 Электрокаталитическая мультикомпонентная трансформация бензальдегидов, 3-метил-2-пиразолин-5-онов и С-Н кислот в 3-(5-гидрокси-3-метилпиразол-4-ил)-3арилпропионитрилы [19]

Общая методика проведения электрокаталитической мультикомпонентной трансформации бензальдегидов 6a,d,f-g,i-k, З-метил-2-пиразолин-5-онов 9а, b и С-Н кислот 8а-с в 3-(5-гидрокси-3метилпиразол-4-ил)-3-арилпропионитрилы 10a-j: Раствор 10 ммоль бензальдегида **6а,d,f-g,i-k**, 10 ммоль 3-метил-2-пиразолин-5-она **9а,b**, 10 ммоль С-Н кислоты 8а-с и 1 ммоль NaBr в 20 мл EtOH подвергали электролизу в бездиафрагменной ячейке, снабженной графитовым анодом и Fе-катодом (площадь электродов $S = 5 \text{ см}^2$), при 20 °C, перемешивании, и тока i = 4 мА/см², пропуская 0.03 F/моль постоянной плотности электричества. По окончании электролиза осадок отделяли фильтрованием, промывали холодным этанолом (5 мл) и высушивали.

[(5-Гидрокси-3-метил-1*Н*-пиразол-4-ил)(фенил)метил] малононитрил (10а): выход 97% (2.45 г); т. пл. 254–256 °С (лит. [103] 258–259 °С); ¹Н ЯМР (DMSO-*d*₆): 2.08 (с, 3H, CH₃), 4.59 (д, *J* = 11.1 Гц, 1H, CH), 5.49 (д, *J* = 11.1 Гц, 1H, CH), 7.23-7.38 (м, 3H,

Ph), 7.45-7.52 (м, 2H, Ph), 10.72 (ушир. с. 1H); ¹³С ЯМР (DMSO-*d*₆): 9.8, 27.5, 41.4, 98.7, 114.2 (2C), 127.6, 127.7 (2C), 128.7 (2C), 138.0, 139.8, 159.1.

Метил 2-циано-3-(5-гидрокси-3-метил-1*Н*-пиразол-4-ил)-3фенилпропаноат (10b): получен в виде смеси двух диастереомеров в соотношении 1:1; выход 84% (2.39 г); т. пл.

172–173 °C; ¹Н ЯМР (DMSO-*d*₆) двойной набор сигналов: 1.95 (с, 3H, CH₃), 2.05 (с, 3H, CH₃), 3.52 (с, 3H, OCH₃), 3.63 (с, 3H, OCH₃), 4.32 (д, *J* = 11.2 Гц,

1Н, СН), 4.35 (д, J = 10.9 Гц, 1Н, СН), 4.78 (д, J = 11.2 Гц, 1Н, СН), 4.82 (д, J = 10.9 Гц, 1Н, CH), 7.15-7.38 (м, 8Н, Ph), 7.42-7.51 (м, 2Н, Ph), 10.75 (ушир. с., 2H); ¹³С ЯМР (DMSO-d₆) двойной набор сигналов: 9.9, 10.0, 40.6, 41.3, 41.4, 41.7, 53.0, 53.2, 99.2, 99.6, 116.7, 116.8, 127.0, 127.1, 127.4 (2C), 127.8 (2C), 128.3 (2C), 128.4 (2C), 137.3, 137.6, 140.4, 140.6, 158.9, 159.1, 165.9, 166.0; *m/z* (относительная интенсивность): 285 (3, [M]⁺), 187 (100), 185 (62), 156 (20), 128 (53), 109 (67), 98 (25), 77 (43), 68 (56), 59 (97); ИК (КВг): 3460, 3376, 2956, 2260, 1748, 1604, 1532, 1312, 1232, 1160 см⁻¹; С₁₅Н₁₅N₃O₃; вычислено (%): С, 63.15; H, 5.30; N, 14.73; найдено (%): С, 62.94; H, 5.42; N, 14.58.

2-циано-3-(5-гидрокси-3-метил-1Н-пиразол-4-ил)-3-

Этил

фенилпропаноат (10c): получен В виде смеси двух диастереомеров в соотношении 1:1; выход 91% (2.36 г); т. пл. 182–183 °C; ¹Н ЯМР (DMSO- d_6) двойной набор сигналов: 0.92 (т, J = 7.1 Гц, 3H, CH₃), 1.04 (T, J = 7.1 Γ H, 3H, CH₃), 1.98 (c, 3H, CH₃), 2.07 (c, 3H, CH₃), 3.90-3.99 (м, 2H, OCH₂), 4.04-4.12 (м, 2H, OCH₂), 4.32 (д, *J* = 11.1 Гц, 1H, CH), 4.34 (д, J = 10.9 Гц, 1Н, СН), 4.76 (д, J = 11.1 Гц, 1Н, СН), 4.79 (д, J = 10.9 Гц, 1H, CH), 7.20-7.39 (м, 8H, Ph), 7.46-7.52 (м, 2H, Ph), 10.95 (ушир. с., 2H); ¹³С ЯМР (DMSO-*d*₆) двойной набор сигналов: 9.9, 10.0, 13.4, 13.5, 40.7, 41.4, 41.6, 42.0, 61.9, 62.0, 99.1, 99.7, 116.8, 116.9, 127.0, 127.1, 127.5 (2C), 127.8 (2C), 128.4 (2C), 128.5 (2C), 137.2, 137.5, 140.5, 140.6, 159.1, 159.2, 165.4, 165.5; *m/z* (относительная интенсивность): 299 (16, [M]⁺), 188 (100), 185 (99), 156 (13), 128 (45), 109 (50), 98 (16), 77 (26), 68 (54), 51 (22); ИК (КВг): 3476, 3340, 2960, 2264, 1748, 1604, 1540, 1308, 1228, 1164 см⁻¹; С₁₆Н₁₇N₃O₃; вычислено (%): С, 64.20; H, 5.72; N, 14.04; найдено (%): C, 64.01; H, 5.90; N, 13.89.

[(5-Гидрокси-3-метил-1Н-пиразол-4-ил)(4-метилфенил)ме-

тил]малононитрил (10d): выход 80% (2.13 г); т. пл. 207-209 °С (лит. [103] 208–209 °С); ¹Н ЯМР (DMSO-*d*₆): 2.07 (с, 3H, CH₃), 2.28 (c, 3H, CH₃), 4.56 (μ , $J = 11.2 \Gamma \mu$, 1H, CH), 5.47 (μ , $J = 11.2 \Gamma \mu$, 1H, CH), 7.15 (д, *J* = 7.9 Гц, 2H, Ph), 7.36 (д, *J* = 7.9 Гц, 2H, Ph), 11.04 (ушир. c, 1H); ¹³С ЯМР (DMSO-*d*₆): 9.7, 20.6, 27.5, 41.1, 98.7, 114.2 (2C), 127.6 (2C), 129.2 (2C), 136.8, 136.9, 137.8, 159.0.

[(4-Хлорфенил)(5-гидрокси-3-метил-1*Н*-пиразол-4-ил)метил] малононитрил (10е): выход 75% (2.15 г); т. пл. 229–230 °С (лит. [103] 243–244 °С); ¹Н ЯМР (DMSO-*d*₆): 2.08 (с, 3H, CH₃), 4.70 (д, *J* = 10.7 Гц, 1H, CH), 5.52 (д, *J* = 10.7 Гц, 1H, CH), 7.44 (д, *J* = 7.9

Гц, 2H, Ph), 7.50 (д, J = 7.9 Гц, 2H, Ph), 10.98 (ушир. с., 1H); ¹³С ЯМР (DMSOd₆): 9.7, 27.4, 40.6, 98.2, 113.9, 114.0, 128.7 (2C), 129.7 (2C), 132.3, 138.1, 138.9, 159.0; m/z (относительная интенсивность): 286 (17, [M]⁺), 221 (100), 188 (33), 175 (83), 163 (13), 153 (26), 128 (27), 109 (39), 98 (18), 66 (45); ИК (KBr): 3446, 3372, 2908, 2232, 1612, 1528, 1496, 1220, 1160, 1096 см⁻¹; C₁₄H₁₁ClN₄O; вычислено (%): C, 58.65; H, 3.87; Cl, 12.37; N, 19.54; найдено (%): C, 58.38; H, 3.94; Cl, 12.51; N, 19.39.

[(**3-Бромфенил**)(**5-гидрокси-3-метил-1***Н*-пиразол-4-ил)метил] малононитрил (**10f**): выход 78% (2.59 г); т пл. 216–217 °C; ¹Н ЯМР (DMSO-*d*₆): 2.11 (с, 3H, CH₃), 4.70 (д, *J* = 11.4 Гц, 1H, CH), 5.57 (д, *J* = 11.4 Гц, 1H, CH), 7.33 (т, *J* = 7.8 Гц, 1H, Ph), 7.46-7.54

(м, 2H, Ph), 11.03 (ушир.с., 1H); ¹³С ЯМР (DMSO-*d*₆): 9.7, 27.3, 40.7, 98.0, 113.8, 113.9, 121.8, 127.0, 130.4, 130.6, 130.8, 138.2, 142.4, 159.0; *m/z* (относительная интенсивность): 332 (12, [M]⁺), 330 (11, [M]⁺), 266 (13), 234 (9), 175 (100), 153 (21), 128 (22), 109 (41), 98 (10), 66 (40); ИК (KBr): 3380, 2976, 2924, 2260, 2192, 1612, 1596, 1476, 1188, 1076 см⁻¹; C₁₄H₁₁BrN₄O; вычислено (%): C, 50.78; H, 3.35; N, 16.91; найдено (%): C, 50.54; H, 3.47; N, 16.84.

[(4-Этилфенил)(5-гидрокси-3-метил-1*Н*-пиразол-4-ил)метил] малононитрил (10g): выход 76% (2.14 г); т. пл. 207–209 °С; ¹Н ЯМР (DMSO- d_6): 1.14 (т, J = 7.1 Гц, 3H, CH₃), 2.07 (с, 3H, CH₃), 2.55 (кв, J =7.1 Γ u, 2H, CH₂), 4.58 (д, $J = 10.2 \Gamma$ u, 1H, CH), 5.49 (д, $J = 10.2 \Gamma$ u, 1H, CH), 7.18 (д, J = 8.0 Гц, 2H, Ph), 7.38 (д, J = 8.0 Гц, 2H, Ph), 10.94 (ушир. с, 1H, CH); ¹³C ЯМР (DMSO-*d*₆): 9.8, 15.5, 27.5, 27.8, 41.1, 98.8, 114.1, 114.2, 127.6 143.0, 159.0; (2C), 128.0 (2C), 137.1. 137.8. m/z(относительная интенсивность): 280 (4, [М]⁺), 214 (32), 185 (46), 175 (63), 128 (26), 109 (57), 98 (23), 77 (22), 66 (100), 39 (70); ИК (KBr): 3432, 3376, 2972, 2260, 1608, 1540, 1528, 1224, 1156, 816 см⁻¹; С₁₆Н₁₆N₄O; вычислено (%): С, 68.55; Н, 5.75; N, 19.99; найдено (%): С, 68.34; Н, 5.92; N, 19.87.

[(4-Фторфенил)(5-гидрокси-3-метил-1*Н*-пиразол-4-ил)метил] малононитрил (10h): выход 82% (2.22 г); т. пл. 226–227 °С (лит. [103] 267–268 °С); ¹Н ЯМР (DMSO-*d*₆): 2.09 (с, 3H, CH₃), 4.68 (д, *J* = 11.3 Гц, 1H, CH), 5.50 (д, *J* = 11.2 Гц, 1H, CH), 7.15-7.25 (м,

2H, Ph), 7.50-7.59 (м, 2H, Ph), 10.96 (ушир. с., 1H); ¹³С ЯМР (DMSO- d_6): 9.6, 27.5, 40.5, 98.4, 114.0 (2C), 115.4 (д, J = 21.4 Гц, 2C), 129.8 (д, J = 8.3 Гц, 2C), 136.1 (д, J = 3.0 Гц, 1C), 137.9, 159.0, 161.7 (д, J = 243.8 Гц, 1C); m/z (относительная интенсивность): 270 (5, [M]⁺), 205 (100), 175 (14), 146 (22), 109 (25), 98 (11), 75 (13), 66 (28), 57 (18), 39 (17); ИК (KBr): 3430, 3360, 2912, 2200, 1608, 1528, 1512, 1240, 1220, 1150 см⁻¹; C₁₄H₁₁FN₄O; вычислено (%): C, 62.22; H, 4.10; N, 20.73; найдено (%): C, 61.91; H, 4.1; N, 20.59.

[(5-Гидрокси-3-метил-1*Н*-пиразол-4-ил)(2-метоксифенил)

метил]малононитрил (10i): выход 79% (2.23 г); т. пл. 257–259 °C (лит. [103] 258–260 °C); ¹Н ЯМР (DMSO-*d*₆): 2.08 (с, 3H, CH₃), 3.84 (с, 3H, OCH3), 4.85 (д, *J* = 11.3 Гц, 1H, CH), 5.55 (д, *J* = 11.3 Гц, 1H, CH), 6.90-7.05 (м, 2H, Ph), 7.24 (т, *J* = 7.8 Гц, 1H, Ph), 7.49 (д, *J* = 7.8 Гц, 1H, Ph), 10.95 (ушир. с., 1H); ¹³C ЯМР (DMSO-*d*₆): 9.8, 26.5, 34.4, 56.3, 97.9, 111.2, 114.2 (2C), 120.8, 126.8, 127.9, 128.8, 137.9, 159.3, 161.5.

[(5-Гидрокси-3-метил-1-фенил-1*Н*-пиразол-4-ил) (фенил)

метил]малононитрил (10j): выход 85% (2.79 г); т. пл. 171-172 °С (лит. [102] 173–174 °С); ¹Н ЯМР (DMSO-*d*₆): 2.20 (с, 3H, CH₃), 4.73 (д, J = 10.8 Гц, 1H, CH), 5.92 (д, J = 10.8 Гц, 1H, CH), 7.15-7.74 (м, 10H, Ph), 11.60 (ушир. с., 1H); ¹³С ЯМР (DMSO-*d*₆): 12.6, 26.3, 41.5, 98.7, 114.2 (2C), 120.5 (2C), 126.2, 127.6, 127.7 (2C), 128.6 (2C), 128.8 (2C), 138.0, 139.8, 140.1, 159.4.

Общая методика проведения химической мультикомпонентной трансформации бензальдегидов 6a,d,f-g,l, 3-метил-2-пиразолин-5-онов 3-(5-гидрокси-3-метилпиразол-4-ил)-3-9a,b С-Н кислот 8а-с в u арилпропионитрилы 10a-f,j-n [47]: Раствор 10 ммоль бензальдегида 6a,d,f**g,l**, 10 ммоль 3-метил-2-пиразолин-5-она **9а,b**, 10 ммоль С-Н кислоты **8а-с** и 1 ммоль NaOAc в 20 мл MeOH или EtOH в колбе интенсивно перемешивали на магнитной мешалке при комнатной температуре в течение 1 ч. По окончании реакции осадок отделяли фильтрованием, промывали холодным этанолом (3 мл) и высушивали.

[(5-Гидрокси-3-метил-1*Н*-пиразол-4-ил)(4-метоксифенил)ме-

тил]малононитрил (10k): выход 92% (2.59 г); т. пл. 207-208 °С; ¹Н ЯМР (DMSO-*d*₆): 2.07 (с, 3H, CH₃), 3.73 (с, 3H, OCH₃), 4.57 (д, J = 11.4 Гц, 1H, CH), 5.45 (д, J = 11.4 Гц, 1H, CH), 6.91 (д, J = 8.4 Гц, 2H, Ph), 7.41 (д, J = 8.4 Гц, 2H, Ph), 10.85 (ушир. с., 1H); ¹³С ЯМР (DMSO d_6): 9.7, 18.5, 27.7, 40.8, 55.0, 98.9, 113.9 (2C), 114.1, 128.9 (2C), 131.8, 137.8, 158.6, 159.0; *m/z* (относительная интенсивность): 282 (28, [M]⁺), 256 (3), 221 (7), 216 (100), 184 (58), 175 (84), 159 (22), 115 (39), 109 (50), 98 (28); ИК (KBr): 3484, 3358, 3257, 2962, 2192, 1644, 1512, 1392, 1260, 1172 cm⁻¹; C₁₅H₁₄N₄O₂; вычислено (%): C, 63.82; H, 5.00; N, 19.85; найдено (%): C, 63.69; H, 5.15; N, 19.71.

Метил 2-циано-3-(5-гидрокси-3-метил-1*Н*-пиразол-4-ил)-3-(4-метоксифенил)пропаноат (10l): получен в виде смеси двух диастереомеров в соотноешнии 1:1; выход 91% (2.87 г);

¹ Сон Т. пл. 159–160 °C; ¹Н ЯМР (DMSO-*d*₆) двойной набор сигналов: 1.97 (с, 3H, CH₃), 2.05 (с, 3H, CH₃), 3.53 (с, 3H, OCH₃), 3.62 (с, 3H, OCH₃), 3.70 (с, 3H, OCH₃), 3.72 (с, 3H, OCH₃), 4.29-4.26 (м, 2H, 2CH), 4.72-4.79 (м, 2H, 2CH), 6.83-6.90 (м, 4H, Ph), 7.27-7.30 (м, 2H, Ph), 7.40-7.43 (м, 2H, Ph), 10.78 (ушир. с., 2H); ¹³C ЯМР (DMSO-*d*₆) двойной набор сигналов: 9.9, 10.0, 40.3, 40.6, 41.0, 41.1, 41.6, 53.0, 53.2, 55.0 (2C), 99.5, 99.9, 113.8 (4C), 116.9, 128.6 (2C), 129.0 (2C), 132.5, 132.6, 137.3, 137.5, 158.2, 158.3, 159.1, 159.2, 166.0, 166.1; *m/z* (относительная интенсивность): 315 (8, [M]⁺), 283 (3), 216 (100), 208 (5), 186 (24), 159 (19), 109 (16), 68 (43), 59 (48); ИК (KBr): 3474, 3397, 2960, 2240, 1747, 1609, 1516, 1306, 1030, 809 см⁻¹; C₁₆H₁₇N₃O₄; вычислено (%): C, 60.94; H, 5.43; N, 13.33; найдено (%): C, 60.72; H, 5.52; N, 13.20.

Метил 2-циано-3-(5-гидрокси-3-метил-1*Н*-пиразол-4-ил)-3-(4-метилфенил)пропаноат (10m): получен в виде смеси двух диастереомеров в соотноешнии 1:1; выход 88% (2.63 г); т. пл. 180–181 °C; ¹Н ЯМР (DMSO-*d*₆) двойной набор сигналов: 1.94

(c, 3H, CH₃), 2.02 (c, 3H, CH₃), 2.23 (c, 3H, CH₃), 2.26 (c, 3H, CH₃), 3.52 (c, 3H, OCH₃), 3.61 (c, 3H, OCH₃), 4.28-4.34 (м, 2H, 2CH), 4.74-4.79 (м, 2H, 2CH), 7.07-7.14 (м, 4H, Ph), 7.21-7.24 (м, 2H, Ph), 7.34-7.36 (м, 2H, Ph), 10.88 (ушир. c., 2H); ¹³C ЯМР (DMSO-*d*₆) двойной набор сигналов: 9.9, 10.0, 20.6 (2C), 40.7, 41.0, 41.4 (2C), 53.0, 53.2, 99.4, 99.8. 116.8 (2C), 127.3 (2C), 127.7 (2C), 129.0 (4C), 136.2 (2C), 137.3, 137.4, 137.5 (2C), 159.1, 159.3, 165.9, 166.0; *m/z* (относительная интенсивность): 299 (7, [M]⁺), 267 (6), 208 (5), 202 (5), 201 (49), 185 (28), 180 (100), 128 (16), 109 (22), 77 (50); ИК (KBr): 3401, 2960, 2245, 1749, 1600, 1516, 1432, 1357, 1297, 1163 см⁻¹; C₁₆H₁₇N₃O₃; вычислено (%): C, 64.20; H, 5.72; N, 14.04; найдено (%): C, 64.03; H, 5.84; N, 13.91.

Метил 3-(4-хлорфенил)-2-циано-3-(5-гидрокси-3-метил-1Нпиразол-4-ил)-пропаноат (10n): получен в виде смеси двух диастереомеров в соотноешнии 1:1; выход 86% (2.74 г); т. пл.

155–156 °С; ¹Н ЯМР (DMSO-*d*₆) двойной набор сигналов: 1.98 (c, 3H, CH₃), 2.04 (c, 3H, CH3), 3.52 (c, 3H, OCH3), 3.61 (c, 3H, OCH3), 4.35-4.42 (м, 2Н, 2СН), 4.78-4.82 (м, 2Н, 2СН), 7.31-7.39 (м, 6Н, Рh), 7.50-7.53 (м, 2H, Ph), 10.81 (ушир. с., 2H); ¹³С ЯМР (DMSO-*d*₆) двойной набор сигналов: 9.8, 9.9, 40.5, 40.7, 40.9, 41.3, 53.1, 53.2, 98.8, 99.3, 116.6, 116.7, 128.4 (4C), 129.4 (2C), 129.8 (2C), 131.7, 131.8, 137.5, 137.7, 139.5, 139.6, 159.0, 159.2, 165.7, 165.8; *m/z* (относительная интенсивность): 319 (4, [M]⁺), 221 (100), 185 (15), 163 (7), 128 (21), 109 (45), 75 (6), 68 (18), 59 (35), 51 (6); ИК (KBr): 3424, 2960, 2248, 1748, 1604, 1532, 1520, 1496, 1300, 1096 см⁻¹; С₁₅H₁₄ClN₃O₃; вычислено (%): C, 56.35; H, 4.41; Cl, 11.09; N, 13.14; найдено (%): C, 56.14; H, 4.52; Cl, 10.93; N, 12.96.

6-Амино-3-метил-4-фенил-1,4-дигидро[2,3-с]пиразол-5-карбонитрил (11): выход 86% (2.17 г); т. пл. 244–245 °С (лит. [103] 244–245 °C); ¹H SMP (DMSO-d₆): 1.79 (c, 3H, CH₃), 4.60 (c, 1H, CH), 6.83 (с, 2H, NH₂), 7.16-7.34 (м, 5H, Ph), 12.09 (с, 1H, NH).

3.2.3 Электрокаталитическая мультикомпонентная трансформация бензальдегидов, малононитрила и циклических 1,3-дикетонов в замещенные 5,6,7,8-тетрагидро-4Н-хромены [17]

Общая методика проведения электрокаталитической мультикомпонентной трансформации бензальдегидов 6a,c,d,f-h, малононитрила и циклических 1,3-дикетонов 12а, в замещенные 5,6,7,8*тетрагидро-4H-хромены 13а-j*: Раствор 10 ммоль бензальдегида **6а,с,d,f-h**, 10 ммоль малононитрила, 10 ммоль циклического 1,3-дикетона 12а, в и 1 ммоль NaBr в 20 мл спирта подвергали электролизу в бездиафрагменной ячейке, снабженной графитовым анодом и Fe-катодом (площадь электродов $S = 5 \text{ см}^2$), при 20 °C, перемешивании, и постоянной плотности тока $i = 4 \text{ MA/cm}^2$, пропуская 0.03 F/моль электричества. По окончании электролиза осадок отделяли фильтрованием, промывали холодным этанолом (3 мл) и высушивали.

2-Амино-5-оксо-4-фенил-5,6,7,8-тетрагидро-4Н-хромен-3-кар-

бонитрил (13а): выход 95% (2.52 г); т. пл. 238–240 °С (лит. [114] 239–241 °C); ¹H ЯМР (DMSO-*d*₆):1.80-2.05 (c, 2H, CH₂), 2.15-2.35 (м, 2H, CH₂), 2.55-2.66 (м, 2H, CH₂), 4.17 (с, 1H, CH), 6.97 (с, 2H, NH₂), 7.10-7.20 (м, 3H, Ph), 7.22-7.31 (м, 2H, Ph).

2-Амино-4-(4-метоксифенил)-5-оксо-5,6,7,8-тетрагидро-4Н-

хромен-3-карбонитрил (13b): выход 91% (2.69 г); т. пл. 195-197 °С (лит. [49] 193–195 °С); ¹Н ЯМР (DMSO-*d*₆): 1.78-1.98 (м. 2Н, СН₂), 2.18-2.30 (м. 2Н, СН₂), 2.53-2.63 (м. 2Н, СН₂), 3.69

(c, 3H, OCH₃), 4.12 (c, 1H, CH), 6.82 (μ , J = 8.6 $\Gamma\mu$, 2H, Ph), 6.92 (c, 2H, NH₂), 7.05 (д, *J* = 8.6 Гц, 2Н, Ph).

2-Амино-4-(4-метилфенил)-5-оксо-5,6,7,8-тетрагидро-4*H*-хромен-3-карбонитрил (13с): выход 86% (2.41 г); т. пл. 223-225 °С; ¹Н ЯМР (DMSO-*d*₆): 1.83-2.05 (м, 2H, CH₂), 2.17-2.33 (м, 5H, NH₂ СН₂+СН₃), 2.54-2.66 (м, 2H, CH₂), 4.16 (с, 1H, CH), 6.91 (с, 2H, NH₂), 7.01-7.12 (M, 4H, Ph); ¹³C *SIMP* (DMSO-*d*₆): 19.7, 20.5, 26.4, 34.9, 36.2, 58.3, 113.9, 119.7, 126.9 (2C), 128.7 (2C), 135.5, 141.8, 158.4, 164.1, 195.7; m/z (относительная интенсивность): 280 (48, [M]⁺), 265 (36), 199 (14), 189 (100), 147 (11), 115 (22), 91 (22), 65 (21), 55 (16), 44 (16); ИК (КВг): 3408, 3322, 2916, 2200, 1684, 1608, 1508, 1386, 1208, 1000 см⁻¹; С₁₇Н₁₆N₂O₂; вычислено (%): С, 72.84; H, 5.75; N, 9.99; найдено (%): С, 72.75; H, 5.84; N, 9.91.

2-Амино-4-(4-хлорфенил)-5-оксо-5,6,7,8-тетрагидро-4Н-хромен-3-карбонитрил (13d): выход 85% (2.55 г); т. пл. 226-228 °С

(лит. [49] 226–229 °C); ¹Н ЯМР (DMSO-*d*₆): 1.77-2.03 (м. 2Н. СН₂), 2.22-2.32 (м, 2H, CH₂), 2.55-2.65 (м, 2H, CH₂), 4.18 (с, 1H,

CH), 7.03 (c, 2H, NH₂), 7.17 (μ , $J = 8.6 \Gamma \mu$, 2H, Ph), 7.32 (μ , $J = 8.6 \Gamma \mu$, 2H, Ph).

2-Амино-4-(3-бромфенил)-5-оксо-5,6,7,8-тетрагидро-4Н-хромен-3-карбонитрил (13е): выход 93% (3.20 г); т. пл. 242-243 °С (лит. [101] 243–244 °С); ¹Н ЯМР (DMSO-*d*₆): 1.82-1.98 (м, 2Н, СН₂), 2.23-2.24 (м, 2H, CH₂), 2.55-2.65 (м, 2H, CH₂), 4.19 (с, 1H,

CH), 7.06 (с, 2H, NH₂), 7.16 (д, *J* = 7.9 Гц, 1H, Ph), 7.24 (т, *J* = 7.9 Гц, 1H, Ph), 7.30 (c, 1H, Ph), 7.37 (д, J = 7.9 Гц, 1H, Ph).

2-Амино-4-(4-нитрофенил)-5-оксо-5,6,7,8-тетрагидро-4Н-хромен-3-карбонитрил (13f): выход 87% (2.71 г); т. пл. 234-236 °С (лит. [49] 234–235 °C); ¹Н ЯМР (DMSO-*d*₆): 1.78-2.05 (м. 2Н. СН₂), 2.24-2.33 (м, 2H, CH₂), 2.55-2.64 (м, 2H, CH₂), 4.32 (с, 1H,

CH), 7.16 (c, 2H, NH₂), 7.42 (μ , $J = 8.6 \Gamma \mu$, 2H, Ph), 8.15 (μ , $J = 8.6 \Gamma \mu$, 2H, Ph).

2-Амино-7,7-диметил-5-оксо-4-фенил-5,6,7,8-тетрагидро-4*H*-хромен-3-карбонитрил (13g): выход 84% (2.47 г); т. пл. 225–226 °С (лит. [114] 226–227 °С); ¹Н ЯМР (DMSO-*d*₆): 0.92 (с, 3H, CH₃), 1.02 (с, 3H, CH₃), 2.14 (д, *J* = 16.1 Гц, 1H, CH), 2.24 (д, *J* = 16.1 Гц, 1H, CH), 2.39 (с, 2H, CH₂), 4.15 (с, 1H, CH), 6.99 (с, 2H, NH₂), 7.10-7.21 (м, 3H, Ph), 7.22-7.30 (м, 2H, Ph).

2-Амино-4-(4-метоксифенил)-7,7-диметил-5-оксо-5,6,7,8-

тетрагидро-4*H***-хромен-3-карбонитрил** (13h): выход 84% (2.72 г); т. пл. 207–209 °С (лит. [114] 201–202 °С); ¹Н ЯМР

(DMSO- d_6): 0.93 (c, 3H, CH₃), 1.02 (c, 3H, CH₃), 2.08 (μ , J =

16.3 Гц, 1H, CH), 2.23 (д, *J* = 16.3 Гц, 1H, CH), 2.44 (с, 2H, CH₂), 3.86 (с, 3H, OCH₃), 4.10 (с, 1H, CH), 6.82 (д, *J* = 8.6 Гц, 2H, Ph), 6.92 (с, 2H, NH₂), 7.03 (д, *J* = 8.6 Гц, 2H, Ph).

2-Амино-4-(3-бромфенил)-7,7-диметил-5-оксо-5,6,7,8-

тетрагидро-4*H***-хромен-3-карбонитрил (13i):** выход 88% (3.28 г); т. пл. 225–227 °С (лит. [101] 225–226 °С); ¹Н ЯМР (DMSO-*d*₆): 0.94 (с, 3H, CH₃), 1.02 (с, 3H, CH₃), 2.10 (д, *J* =

15.9 Гц, 1H, CH), 2.24 (д, *J* = 15.9 Гц, 1H, CH), 2.51 (с, 2H, CH₂), 4.19 (с, 1H, CH), 7.07 (с, 2H, NH₂), 7.15 (д, *J* = 7.8 Гц, 1H, Ph), 7.25 (т, *J* = 7.8 Гц, 1H, Ph), 7.29 (с, 1H, Ph), 7.37 (д, *J* = 7.8 Гц, 1H, Ph).

2-Амино-7,7-диметил-4-(4-нитрофенил)-5-оксо-5,6,7,8-

тетрагидро-4*H***-хромен-3-карбонитрил (13j):** выход 85% (2.88 г); т. пл. 208–209 °С (лит. [52] 209–210 °С); ¹Н ЯМР (DMSO-*d*₆): 0.94 (с, 3H, CH₃), 1.02 (с, 3H, CH₃), 2.08 (д, *J* =

16.0 Гц, 1H, CH), 2.25 (д, *J* = 16.0 Гц, 1H, CH), 2.53 (с, 2H, CH₂), 4.35 (с, 1H, CH), 7.19 (с, 2H, NH₂), 7.43 (д, *J* = 8.0 Гц, 2H, Ph), 8.14 (д, *J* = 8.0 Гц, 2H, Ph).

3.2.4 Электрокаталитическая мультикомпонентная трасформация ароматических альдегидов, малононитрила и 4-гидрокси-6-метил-2-пирона в пирано[4,3-b]пираны [21]

Общая методика проведения электрокаталитической трансформации мультикомпонентной альдегидов ароматических 6a,c,d,h,l-n, малононитрила и 4-гидрокси-6-метил-2-пирона в замещенные *пирано*[4,3-b]пираны 14а-g: Раствор 5 ммоль ароматического альдегида **6а,с,d,h,l-n**, 5 ммоль малононитрила, 5 ммоль 4-гидрокси-6-метил-2-пирона и 0.5 ммоль NaBr в 20 мл EtOH подвергали электролизу в бездиафрагменной ячейке, снабженной графитовым анодом и Fe-катодом (площадь электродов $S = 5 \text{ см}^2$), при 78 °C, перемешивании, и постоянной плотности тока $i = 50 \text{ mA/cm}^2$, 0.1 F/моль пропуская электричества. По окончании электролиза осадок отделяли фильтрованием, промывали холодным эфиром (2×5 мл) и высушивали.

2-Амино-7-метил-5-оксо-4-фенил-4Н,5Н-пирано[4,3-b]пи-

ран-3-карбонитрил (14а): выход 92% (1.29 г); т. пл. 231–233 °С (лит. [115] 231–233 °С); ¹Н ЯМР (DMSO-*d*₆): 2.22 (с, 3Н,

CH₃), 4.28 (с, 1H, CH), 6.27 (с, 1H, CH), 7.17 (с, 2H, NH2), 7.20-7.24 (м, 3H, Ph), 7.29-7.33 (м, 2H, Ph).

2-Амино-4-(4-метоксифенил)-7-метил-5-оксо-4Н,5Н-

пирано[4,3-*b*]пиран-3-карбонитрил (14b): выход 91% (1.41 г); т. пл. 221–223 °С (лит. [116] 205–207 °С); ¹Н

ЯМР (DMSO- d_6): 2.21 (c, 3H, CH₃), 3.72 (c, 3H, OCH₃), 4.22 (c, 1H, CH), 6.24 (c, 1H, CH), 6.86 (д, $J = 8.3 \Gamma \mu$, 2H, Ph), 7.09 (д, $J = 8.3 \Gamma \mu$, 2H, Ph), 7.13 (c, 2H, NH₂).

2-Амино-7-метил-4-(4-метилфенил)-5-оксо-4H,5H-

пирано[4,3-b]пиран-3-карбонитрил (14с): выход 86% (1.27 г); т. пл. 228–230 °С (лит. [115] 228–230 °С); ¹Н ЯМР CH₃

(DMSO-d₆): 2.20 (c, 3H, CH₃), 2.25 (c, 3H, CH₃), 4.24 (c, 1H, CH), 6.25 (c, 1H, CH), 7.05-7.12 (м, 4H, Ph), 7.16 (с, 2H, NH₂).

2-Амино-7-метил-4-(4-нитрофенил)-5-оксо-4H,5H-

пирано[4.3-*b*]пиран-3-карбонитрил (14d): выход 93% (1.51 г); т. пл. 210–212 °С (лит. [115] 211–213 °С); ¹Н ЯМР

(DMSO-d₆): 2.23 (c, 3H, CH₃), 4.50 (c, 1H, CH), 6.30 (c, 1H, CH), 7.33 (c, 2H, NH₂), 7.50 (д, *J* = 8.6 Гц, 2H, Ph), 8.18 (д, *J* = 8.6 Гц, 2H, Ph).

2-Амино-4-(4-бромфенил)-7-метил-5-оксо-4Н,5Н-пирано [4,3-*b*]пиран-3-карбонитрил (14е): выход 90% (1.62 г); т. пл. 218–220 °С (лит. [115] 218–220 °С); ¹Н ЯМР (DMSO d_6): 2.22 (c, 3H, CH₃), 4.30 (c, 1H, CH), 6.27 (c, 1H, CH), 7.16 (μ , $J = 8.2 \Gamma \mu$, 2H,

2-Амино-7-метил-5-оксо-4-пиридин-3-ил-4H,5H-пирано

Ph), 7.22 (c, 2H, NH₂), 7.49 (μ , $J = 8.2 \Gamma \mu$, 2H, Ph).

[4,3-*b*]пиран-3-карбонитрил (14f): выход 89% (1.25 г); т. пл. 221-223 °C; ¹H *SMP* (DMSO-*d*₆): 2.23 (c, 3H, CH₃), 4.39 (c, 1H, CH), 6.30 (c, 1H, CH), 7.30 (c, 2H, NH₂), 7.33-7.37 (м, 1H, Ar), 7.62 (д, J = 7.6 Гц, 1Н, Ar), 8.46 (м, 2Н, Ar); ¹³С ЯМР (DMSO-*d*₆): 19.3, 34.0, 56.9, 98.0, 99.7, 119.1, 123.7, 135.2, 138.9, 148.2, 149.0, 158.2, 158.4, 161.3, 163.2; ИК (KBr): 3409, 3129, 2886, 2192, 1704, 1668, 1646, 1621, 1379, 1258 cm⁻¹; ESI-HRMS (масс-спектрометрия разрешения высокого с ионизацией электрораспылением): $C_{15}H_{12}N_3O_3$: 282.0879; найдено вычислено для 282.0884 [M+H]⁺.

2-Амино-4-фуран-2-ил-7-метил-5-оксо-4Н,5Н-пирано[4,3**b**]пиран-3-карбонитрил (14g): выход 87% (1.17 г); т. пл. 233–235 °C; ¹Н ЯМР (DMSO-*d*₆): 2.24 (с, 3H, CH₃), 4.45 (с, 1H, CH), 6.21 (с, 1H, CH), 6.27 (с, 1H, CH), 6.37 (с, 1H, CH), 7.27 (с, 2H, NH₂), 7.52 (с, 1H, CH); ¹³С ЯМР (DMSO-*d*₆): 19.3, 29.9, 55.2, 97.9, 98.2, 106.2, 110.5, 119.0, 142.2, 154.4, 158.7, 158.8, 161.1, 163.2; ИК (KBr): 3394, 3128, 2988, 2195, 1709, 1674, 1644, 1614, 1380, 1259 см⁻¹; ESI-HRMS (масс-спектрометрия высокого разрешения с ионизацией электрораспылением): вычислено для $C_{14}H_{11}N_2O_4$: 271.0714; найдено 271.0719 [M+H]⁺.

3.2.5 Электрокаталитическая мультикомпонентная трансформация ароматических альдегидов, 1-метил-4гидроксихинолин-2-она и С-Н кислот в пирано[3,2-с]хинолоны [22]

Общая методика проведения электрокаталитической мультикомпонентной трансформации ароматических альдегидов, 1-метил-4-гидроксихинолин-2-она u С-Н кислот в замещенные пирано[3,2-с]хинолоны: Раствор 5 ммоль ароматического альдегида **6а,с-d,f,l-n**, 5 ммоль 1-метил-4-гидроксихинолин-2-она, 5 ммоль С-Н кислоты **За,b** и 0.5 ммоль NaBr в 20 мл EtOH подвергали электролизу в бездиафрагменной ячейке, снабженной графитовым анодом и Fe-катодом (площадь электродов S = 5 см²), при 78 °C, перемешивании, и постоянной плотности тока $j = 60 \text{ мA/cm}^2$, пропуская 0.1 F/моль электричества.

Выделение для **15а-***g*: по окончании электролиза осадок отделяли фильтрованием, промывали холодным EtOH (3 мл) и высушивали.

Выделение для 15*h-j*: по окончании электролиза реакционную смесь упаривали на роторном испарителе до одной пятой от первоначального объема (*ca.* 4 мл). Выпавший осадок отфильтровывали, промывали холодным EtOH (3 мл) и высушивали.

2-Амино-6-метил-5-оксо-4-фенил-5,6-дигидро-4*H***-пирано** [**3,2-***c*]хинолин-3-карбонитрил (**15***a*): выход 97% (1.60 г); т. пл. 303–304 °С (лит. [117] 300 °С); ¹Н ЯМР (DMSO-*d*₆): 3.52 (с, 3H, CH₃), 4.51 (с, 1H, CH), 7.19-7.29 (м, 7H, NH₂+Ar), 7.36-

7.41 (м, 1Н, Ar), 7.55 (д, *J* = 8.5 Гц, 1Н, Ar), 7.67-7.72 (м, 1Н, Ar), 8.02 (д, *J* = 7.9 Гц, 1Н, Ar).

2-Амино-6-метил-4-(4-метоксифенил)-5-оксо-5,6-дигидро-4*Н*-пирано[3,2-*c*]хинолин-3-карбонитрил (15b):

выход 86% (1.55 г); т. пл. 267–268 °С (лит. [117] 258 °С); ¹Н ЯМР (DMSO-*d*₆): 3.53 (с, 3H, CH₃), 3.70 (с, 3H, OCH₃),

4.47 (с, 1H, CH), 6.83 (д, J = 8.2 Гц, 2H, Ar), 7.13 (д, J = 8.2 Гц, 2H, Ar), 7.21 (с, 2H, NH₂), 7.35-7.40 (м, 1H, Ar), 7.53 (д, J = 8.5 Гц, 1H, Ar), 7.65-7.71 (м, 1H, Ar), 8.01 (д, J = 7.8 Гц, 1H, Ar); ¹³С ЯМР (DMSO- d_6): 29.2, 36.5, 55.0, 58.2, 109.2, 112.6, 113.6 (2C), 114.8, 115.1, 119.8, 122.0, 122.1, 128.5 (2C), 131.4, 138.5, 149.8, 158.0, 158.8, 159.7; ИК (KBr): 3376, 3195, 2978, 2197, 1682, 1598, 1510, 1375, 1256, 1154 см⁻¹; ESI-HRMS (масс-спектрометрия высокого разрешения с ионизацией электрораспылением): вычислено для $C_{21}H_{17}N_3NaO_3$: 382.1168; найдено 382.1162 [M+Na]⁺.

2-Амино-6-метил-4-(4-метилфенил)-5-оксо-5,6-дигидро-4*Н*-пирано[**3,2-***c*]хинолин-**3-карбонитрил** (15с): выход 87% (1.49 г); т. пл. 281–282 °С; ¹Н ЯМР (DMSO-*d*₆): 2.25 (с, 3H, CH₃), 3.54 (с, 3H, CH₃), 4.49 (с, 1H, CH), 7.05-

7.12 (м, 4H, Ar), 7.24 (с, 2H, NH₂), 7.38-7.43 (м, 1H, Ar), 7.58 (д, J = 8.5 Гц, 1H, Ar), 7.69-7.74 (м, 1H, Ar), 8.04 (д, J = 7.9 Гц, 1H, Ar); ¹³C ЯМР (DMSO- d_6): 20.5, 29.2, 36.9, 58.1, 109.1, 112.6, 114.8, 119.7, 122.0, 122.1, 127.3 (2C), 128.8 (2C), 131.4, 135.7, 138.5, 141.3, 149.9, 158.8, 159.7; ИК (KBr): 3409, 3313, 2967, 2185, 1673, 1597, 1505, 1462, 1378, 1257 см⁻¹; ESI-HRMS (масс-

спектрометрия высокого разрешения с ионизацией электрораспылением): вычислено для C₂₁H₁₇N₃NaO₂: 366.1218; найдено 366.1213 [M+Na]⁺.

2-Амино-4-(4-хлорфенил)-6-метил-5-оксо-5,6-дигидро-4Н-пирано[3,2-с]хинолин-3-карбонитрил (15d): выход 95% (1.73 г); т. пл. 284–285 °С; ¹Н ЯМР (DMSO-*d*₆): 3.54 (с, 3H, CH₃), 4.55 (с, 1H, CH), 7.24-7.26 (м, 2H, Ar), 7.33-7.42

(м, 5H, Ar), 7.57 (д, J = 8.4 Гц, 1H, Ar), 7.69-7.74 (м, 1H, Ar), 8.03 (д, J = 7.9 Гц, 1H, Ar); ¹³С ЯМР (DMSO- d_6): 29.2, 36.8, 57.5, 108.4, 112.6, 114.9, 119.6, 122.1, 122.2, 128.2 (2C), 129.4 (2C), 131.3, 131.6, 138.6, 143.3, 150.2, 158.8, 159.7; ИК (KBr): 3397, 3312, 2973, 2186, 1673, 1595, 1462, 1408, 1378, 1289 см⁻¹; ESI-HRMS (масс-спектрометрия высокого разрешения с ионизацией электрораспылением): вычислено для $C_{20}H_{14}ClN_3NaO_2$: 386.0672; найдено 386.0664 [M+Na]⁺.

2-Амино-4-(4-бромфенил)-6-метил-5-оксо-5,6-дигидро-4*H*-пирано[**3,2-***c*]хинолин-**3-карбонитрил** (**15e**): выход 89% (1.82 г); т. пл. 285–286 °С; ¹Н ЯМР (DMSO-*d*₆): 3.53 (с, 3H, CH₃), 4.52 (с, 1H, CH), 7.19 (д, *J* = 7.8 Гц, 2H, Ar), 7.31

(с, 2H, NH₂), 7.37-7.42 (м, 1H, Ar), 7.47 (д, J = 7.8 Гц, 2H, Ar), 7.56 (д, J = 8.5 Гц, 1H, Ar), 7.68-7.73 (м, 1H, Ar), 8.02 (д, J = 7.8 Гц, 1H, Ar); ¹³С ЯМР (DMSO- d_6): 29.2, 36.9, 57.4, 108.3, 112.6, 114.9, 119.5, 119.7, 122.1, 122.2, 129.8 (2C), 131.1 (2C), 131.6, 138.6, 143.7, 150.2, 158.8, 159.7; ИК (KBr): 3398, 3193, 2973, 2187, 1673, 1627, 1596, 1378, 1316, 1256 см⁻¹; ESI-HRMS (масс-спектрометрия высокого разрешения с ионизацией электрораспылением): вычислено для C₂₀H₁₄BrN₃NaO₂: 430.0167; найдено 430.0161 [M+Na]⁺.

2-Амино-6-метил-5-оксо-пиридин-3-ил-5,6-дигидро-4Н-

пирано[3,2-с]хинолин-3-карбонитрил (15f): выход 88% (1.45 г); т. пл. 285–286 °С; ¹Н ЯМР (DMSO-*d*₆): 3.53 (с, 1Н,

СН₃), 4.60 (с, 1H, CH), 7.28-7.43 (м, 4H, NH₂+Ar), 7.56-7.59 (м, 2H, Ar), 7.70-7.75 (м, 1H, Ar), 8.04 (д, J = 7.9 Гц, 1H, Ar), 8.40 (д, J = 4.5 Гц, 1H, Ar), 8.49 (с, 1H, Ar); ¹³С ЯМР (DMSO- d_6): 29.2, 35.1, 56.9. 107.8, 112.5, 114.9, 119.5, 122.1, 122.2, 123.6, 131.7, 135.0, 138.7, 139.6, 147.9, 148.9, 150.3, 158.8, 159.7; ИК (KBr): 3353, 3115, 2953, 2186, 1681, 1669, 1622, 1599, 1384, 1162 см⁻¹; ESI-HRMS (масс-спектрометрия высокого разрешения с ионизацией электрораспылением): вычислено для $C_{19}H_{14}N_4NaO_2$: 353.1014; найдено 353.1011 [M+Na]⁺.

2-Амино-4-(2-фурил)-6-метил-5-оксо-5,6-дигидро-4Н-

пирано[3,2-*c*]хинолин-3-карбонитрил (15g): выход 85% (1.36 г); т. пл. 296–297 °C; ¹Н ЯМР (DMSO-*d*₆): 3.59 (c, 3H, CH₃), 4.69 (c, 1H, CH), 6.15 (д, *J* = 2.6 Гц, 1H, Ar), 6.33 (c, 1H,

Ar), 7.33 (c, 2H, NH₂), 7.37-7.47 (м, 2H, Ar), 7.59 (д, J = 8.4 Гц, 1H, Ar), 7.70-7.75 (м, 1H, Ar), 8.01 (д, J = 7.9 Гц, 1H, Ar); ¹³С ЯМР (DMSO- d_6): 29.3, 30.9, 55.1, 105.7, 106.4, 110.4, 112.6, 115.0, 119.5, 122.1, 122.2, 131.8, 138.6, 141.9 (2C), 150.7, 155.1, 159.6; ИК (KBr): 3373, 3215, 2946, 2198, 1674, 1630, 1599, 1379, 1257, 1149 см⁻¹; ESI-HRMS (масс-спектрометрия высокого разрешения с ионизацией электрораспылением): вычислено для $C_{18}H_{13}N_3NaO_3$: 342.0855; найдено 342.0849 [M+Na]⁺.

Метил 2-амино-6-метил-5-оксо-4-фенил-5,6-дигидро-4*H*пирано[3,2-*c*]хинолин-3-карбоксилат (15h): выход 88% (1.59 г); т. пл. 237–239 °С; ¹Н ЯМР (DMSO-*d*₆): 3.56 (с, 6H, СН₃+ОСН₃), 4.89 (с, 1H, CH), 7.07-7.11 (м, 1H, Ar), 7.17-7.25

(м, 4H, Ar), 7.36-7.41 (м, 1H, Ar), 7.55 (д, *J* = 8.5 Гц, 1H, Ar), 7.66-7.71 (м, 1H, Ar), 7.77 (с, 2H, NH₂), 8.10 (д, *J* = 7.9 Гц, 1H, Ar); ¹³С ЯМР (DMSO-*d*₆): 29.3, 35.1, 50.5, 77.3, 112.1, 112.9, 114.9, 122.0, 122.1, 126.0, 127.7 (2C), 127.9 (2C), 131.3, 138.5, 145.8, 150.0, 159.6, 160.1, 168.1; ИК (КВг): 3398, 3291, 2946, 1689, 1658, 1602, 1529, 1379, 1304, 1093 см⁻¹; ESI-HRMS (масс-спектрометрия

высокого разрешения с ионизацией электрораспылением): вычислено для C₂₁H₁₈N₂NaO₄: 385.1159; найдено 385.1164 [M+Na]⁺.

Метил 2-амино-4-(4-хлорфенил)-6-метил-5-оксо-5,6дигидро-4*H*-пиран[3,2-*c*]хинолин-3-карбоксилат (15i): выход 91% (1.81 г); т. пл. 223–224°С; ¹Н ЯМР (DMSO-*d*₆): 3.56 (с, 6H, CH₃+OCH₃), 4.86 (с, 1H, CH), 7.23-7.29 (м, 4H,

Ar), 7.37-7.42 (м, 1H, Ar), 7.56 (д, J = 8.5 Гц, 1H, Ar), 7.67-7.72 (м, 1H, Ar), 7.81 (с, 2H, NH₂), 8.10 (д, J = 7.9 Гц, 1H, Ar); ¹³С ЯМР (DMSO- d_6): 29.3, 34.8, 50.6, 76.7, 111.4, 112.8, 114.9, 122.1, 122.2, 127.8 (2C), 129.6 (2C), 131.4, 138.5, 144.8, 150.0, 153.7, 159.5, 160.0, 168.0; ИК (KBr): 3398, 3298, 2950, 2224, 1691, 1651, 1623, 1530, 1379, 1160 см⁻¹; ESI-HRMS (масс-спектрометрия высокого разрешения с ионизацией электрораспылением): вычислено для $C_{21}H_{17}CIN_2NaO_4$: 419.0775; найдено 419.0767 [M+Na]⁺.

Метил 2-амино-6-метил-5-оксо-4-пиридин-3-ил-5,6дигидро-4*H*-пирано[3,2-*c*]хинолин-3-карбоксилат (15j): выход 85% (1.54 г); т. пл. 213–215 °C; ¹Н ЯМР (DMSO-*d*₆): 3.55 (c, 6H, CH₃+OCH₃), 4.86 (c, 1H, CH), 7.20-7.24 (м, 1H,

Ar), 7.37-7.42 (м, 1H, Ar), 7.53-7.58 (м, 2H, Ar), 7.68-7.73 (м, 1H, Ar), 7.85 (с, 2H, NH₂), 8.11 (д, J = 7.7 Гц, 1H, Ar), 8.31 (д, J = 3.8 Гц, 1H, Ar), 8.49 (с, 1H, Ar); ¹³С ЯМР (DMSO- d_6): 29.4, 33.3, 50.7, 76.4, 110.9, 112.8, 115.0, 122.2, 122.3, 123.4, 131.6, 135.1, 138.7, 141.2, 147.2, 149.4, 150.3, 159.6, 160.1, 168.0; ИК (KBr): 3367, 3271, 2951, 1688, 1637, 1601, 1542, 1377, 1254, 1087 см⁻¹; ESI-HRMS (масс-спектрометрия высокого разрешения с ионизацией электрораспылением): вычислено для $C_{20}H_{17}N_3NaO_4$: 386.1117; найдено 386.1111 [M+Na]⁺.

Выводы

1. Предложены и осуществлены, каскадные и мультикомпонентные электрокаталитические процессы конденсации альдегидов и С-Н кислот в бездиафрагменном электролизере, в спиртах, с использованием бромида натрия в качестве электролита, в нейтральной среде, в интервале температур 20-80 °C.

2. Проведено систематическое исследование электрохимической трансформации альдегидов и С-Н кислот в фармакофорные би-, три- и тетрациклические гетероциклические системы под действием, генерируемых на катоде из спиртов, алкоголят-ионов. В качестве основных химических стадий процессы включают реакции Кневенагеля ЭТИ И Михаэля: большинство изученных трансформаций завершается стадией циклизации.

3. Реализованы следующие электрокаталитические каскадные и мультикомпонентные трансформации салициловых альдегидов и С-Н кислот в функционально замещенные 2-амино-4*H*-хромены с выходом по веществу 83-95% и выходом по току 900-1900%:

а) салициловых альдегидов и малононитрила в 2-амино-4*H*-хромен-3карбонитрилы. Соединения этого типа используются при лечении артритов различных типов и применяются в терапии многих видов рака,

б) салициловых альдегидов и эфиров циануксусной кислоты в 2-амино-4*H*хромен-3-карбоксилаты – класс соединений, вызывающий апоптоз в клетках лимфомы В и лейкемии HL-60,

в) салициловых альдегидов, малононитрила и триэтилфосфита в (2-амино-4*H*-хромен-4-ил)фосфонаты – соединения с выявленной противораковой активностью.

4. Осуществлена электрокаталитическая каскадная трансформация бензальдегидов и 3-метил-1-фенил-2-пиразолин-5-она в замещенные 4,4'-(ариметилен)бис(1*H*-пиразол-5-олы) - соединения с известной

126

противовоспалительной, жаропонижающей и антидепрессантной активностью.

5. Обнаружена электрокаталитическая мультикомпонентная трансформация бензальдегидов, 3-метил-2-пиразолин-5-онов и С-Н кислот в 3-(5-гидрокси-3-метилпиразол-4-ил)-3-арилпропионитрилы с выходом 75-97% по веществу и 2500-3200% по току. Эта реакция осуществлена также в химическом варианте.

6. Реализованы следующие электрокаталитические мультикомпонентные реакции бензальдегидов и С-Н кислот с образованием би-, три- и тетрациклических гетероциклических систем с выходом по веществу 75-95% и выходом по току 900-3200%:

а) трансформация бензальдегидов, малононитрила и циклических
 1,3-дикетонов в 5,6,7,8-тетрагидо-4*H*-хромены,

б) быстрая (3 мин.) и эффективная трансформация ароматических альдегидов, малононитрила и 4-гидрокси-6-метил-2-пирона в пирано[4,3-*b*]пирановые системы,

в) быстрая (3 мин.) и эффективная трансформация ароматических альдегидов, С-Н кислот и 1-метил-4-гидроксихинолин-2-она в пирано[3,2-*c*]хинолоновые системы.

7. Принципиально новым электрокаталитическим методом из простых соединений – альдегидов и С-Н кислот получены би- и три- и тетрациклические гетероциклические системы, активно взаимодействующие с биологическими рецепторами, проявляющие фармакологические свойства и широко известные как "privileged medicinal scaffolds".

127

Список литературы

- Dictionary of Natural Products, version 14.1, Chapman&Hall/CRC Informa: London, 2005.
- "Organic Electrochemistry" (Ed.: Lund, H.). // Marcel Dekker Inc.; New York;
 2000.
- 3. Niyazymbetov, M.E.; Evans, D.H. "The utility of carbanions and heteroatomanions in electroorganic synthesis". // *Tetrahedron*; **1993**; *49*; 43; 9627-9688.
- 4. Shestopalov, A.M.; Niazimbetova, Z.I.; Evans, D.H.; Niyazymbetov, M.E.
 "Synthesis of 2-amino-4-aryl-3-cyano-6-methyl-5-ethoxycarbonyl-4*H*-pyrans". // *Heterocycles*; 1999; 51; 1101-1107.
- Shestopalov, A.M.; Emeliyanova, Y.M.; Shestopalov, A.A.; Rodinovskaya, L.A.; Niazimbetova, Z.I.; Evans, D.H. "Cross-condensation of derivatives of cyanoacetic acid and carbonyl compounds. Part I: Single-stage synthesis of 1'substituted 6-amino-spiro-4-(piperidin-4')-2H,4H-pyrano[2,3-c]pyrazole-5carbonitriles". // Tetrahedron; 2003; 59; 7491-7496.
- Shestopalov, A.M.; Emeliyanova, Y.M.; Shestopalov, A.A.; Rodinovskaya, L.A.; Niazimbetova, Z.I.; Evans, D.H. "One-step synthesis of substituted 6-amino-5-cyanospiro-4-(piperidin-4')-2H,4H-dihydropyrazolo[4,3-b]pyrans". // Org. Lett.; 2002; 4; 423-425.
- Antico, P.; Capaccio, V.; Di Mola, A.; Massa, A.; Palombi, L. "Electrochemically induced tandem and sequential conjugate addition process: one-pot synthesis of diverse functionalized isoindolinones". // Adv. Synth. Catal.; 2012; 354; 1717-1724.
- Fotouhi, L.; Heravi, M.M.; Fatehi, A.; Bakhtiari, K. "Electrogenerated basepromoted synthesis of tetrahydrobenzo[b]pyran derivatives". // Tetrahedron Lett.; 2007; 48; 5379-5381.

- Makarem, S.; Mohammadi, A.A.; Fakhari, A.R. "A multi-component electroorganic synthesis of 2-amino-4*H*-chromenes". // *Tetrahedron Lett.*; 2008; 49; 7194-7196.
- Elinson, M.N.; Lizunova, T.L.; Ugrak, B.I.; Lindeman, S.V.; Dekaprilevich, M.O.; Turdybekov, K.M.; Struchkov, Y.T.; Nikishin, G.I. "Electrocatalytic tranaformation of 1,1,2,2-tetracyanocyclopropanes into bicyclic pyrrolines". // *Mendeleev Commun.*; 1993; 157-159.
- Elinson, M.N.; Lizunova, T.L.; Ugrak, B.I.; Nikishin, G.I. "Electrochemical transformation of malononitrile and aldehydes into 3-substituted 1,1,2,2-tetracyanocyclopropanes and bicyclic pyrrolines". // Mendeleev Commun.; 1993; 191-192.
- Elinson, M.N.; Fedukovich, S.K.; Lizunova, T.L.; Nikishin, G.I. "Electrochemical transformation of malononitrile and carbonyl compounds into functionally substituted cyclopropanes: electrocatalytic variant of the Wideqvist reaction". // Tetrahedron; 2000; 56; 3063-3069.
- Элинсон, М.Н.; Федукович, С.К.; Займовская, Т.А.; Верещагин, А.Н.; Никишин, Г.И. "Электрокаталитическая трансформация малононитрила и циклоалкилиденмалононитрилов в спиротри- и спиротетрациклические соединения, содержащие циклопропановый и пирролиновый фрагменты". // Изв. АН Сер. Хим.; 2003, 2122-2127.
- 14. Элинсон, М.Н.; Федукович, С.К.; Займовская, Т.А.; Верещагин, А.Н.; Беляков, П.А.; Горбунов, С.В.; Никишин, Г.И. "Стереоселективная электрокаталитическая циклизация эфиров З-замещенных 2,2-диианоциклопропан-1,1-дикарбоновых кислот в эфиры 6-замещенных (1*R*, 5*R*, 6*R*)*-4,4-диалкокси-2-оксо-5-циано-3-азабицикло[3.1.0]гексан-1-карбоновых кислот". // Изв. АН Сер. Хим.; 2006, 102-107.
- Elinson, M.N.; Dorofeev, A.S.; Fedukovich, S.K.; Nasybullin, R.F.; Gorbunov, S.V.; Nikishin, G.I. "Electrocatalytic chain transformation of salicylaldehydes

and malononitrile into substituted 4*H*-chromenes". // *Electrochem. Commun.*; **2006**; *8*; 1567-1571.

- Elinson, M.N.; Dorofeev, A.S.; Fedukovich, S.K.; Gorbunov, S.V.; Nasybullin, R.F.; Stepanov, N.O.; Nikishin, G.I. "Electrochemically induced chain transformation of salicylaldehydes and cyanoacetates into substituted 4*H*chromenes". // Tetrahedron Lett.; 2006; 47; 7629-7633.
- Elinson, M.N.; Dorofeev, A.S.; Fedukovich, S.K.; Gorbunov, S.V.; Nasybullin, R.F.; Miloserdov, F.M.; Nikishin, G.I. "The implication of electrocatalysis in MCR strategy: transformation of cyclic 1,3-diketones, aldehydes and malononitrile into substituted 5,6,7,8-tetrahydro-4*H*-chromenes". // Eur. J. Org. Chem.; 2006; 4335-4339.
- Elinson, M.N.; Dorofeev, A.S.; Nasybullin, R.F.; Nikishin, G.I. "Facile and convenient synthesis of 4,4'-(arylmethylene)bis(1*H*-pyrazol-5-ols) by electrocatalytic tandem Knoevenagel-Michael reaction". // Synthesis; 2008; 12, 1933-1937.
- Elinson, M.N.; Dorofeev, A.S.; Nasybullin, R.F.; Fedukovich, S.K.; Nikishin, G.I. "Electrocatalytic tandem Knoevenagel-Michael reaction of 3-methyl-2pyrazolin-5-ones, aryl aldehydes and cyano-functionalized C-H acids: facile and convenient multicomponent way to substituted 3-(5-hydroxy-3methylpyrazol-4-yl)-3-arylpropionitriles". // Electrochim. Acta.; 2008; 53; 5033-5038.
- Федукович, С.К.; Элинсон, М.Н.; Дорофеев, А.С.; Горбунов, С.В.; Насыбуллин, Р.Ф.; Степанов, Н.О.; Никишин, Г.И. "Электрокаталитическая цепная трансформация салицилового альдегида и С-Н кислот в замещенные 4*H*-хромены". // Изв. АН Сер. Хим.; 2008; 582-588.
- Elinson, M.N.; Nasybullin, R.F.; Nikishin, G.I. "Electrocatalytic efficient multicomponent approach to medicinally relevant pyrano[4,3-*b*]pyran scaffold". // Electrocatal.; 2013; 4, 56-60.

- Elinson, M.N.; Nasybullin, R.F.; Nikishin, G.I. "Electrocatalytic fast and efficient multicomponent approach to medicinally relevant pyrano[3,2-c]quinolone scaffold". // J. Electrochem. Soc.; 2013; 160, G3053-G3057.
- Elinson, M.N.; Nasybullin, R.F.; Nikishin, G.I. "Electrocatalytic fast and efficient multicomponent approach to medicinally relevant (2-amino-4*H*chromene-4-yl)phosphonate scaffold". // *Heteroatom. Chem.*; 2013; 24; 398-403.
- 24. Elinson, M.N.; Dorofeev, A.S.; Miloserdov, F.M.; Ilovaisky, A.I.; Fedukovich, S.K.; Belyakov, P.A.; Nikishin, G.I. "Catalysis of salicylaldehydes and two different C-H acids with electricity: first example of an efficient multicomponent approach to the design of functionalized medicinally privileged 2-amino-4*H*-chromene scaffold". // Adv. Synth. Catal.; 2008; 350; 591-601.
- 25. Elinson, M.N.; Ilovaisky, A.I.; Merkulova, V.M.; Zaimovskaya, T.A.; Nikishin, G.I. "Electrocatalytic multicomponent assembling of aldehydes, *N*alkyl barbiturates and malononitrile: an efficient approach to pyrano[2,3-*d*]pyrimidines". // *Mendeleev Commun.*; 2011; 21; 122-124.
- 26. Elinson, M.N.; Ilovaisky, A.I.; Dorofeev, A.S.; Merkulova, V.M.; Stepanov, N.O.; Miloserdov, F.M.; Ogibin, Yu.N.; Nikishin, G. I. "Electrocatalytic multicomponent transformation of cyclic 1,3-diketones, isatins and malononitrile: facile and convenient way to functionalized spirocyclic (5,6,7,8-tetrahydro-4*H*-chromene)-4,3'-oxindole system". // *Tetrahedron*; 2007; 63; 10543-10548.
- Elinson, M.N.; Dorofeev, A.S.; Miloserdov, F. M.; Nikishin, G. I. "Electrocatalytic multicomponent assembling of isatins, 3-methyl-2-pyrazolin-5-ones and malononitrile: facile and convenient way to functionalized spirocyclic [indole-3,4'-pyrano[2,3-c]pyrazole] system". // Mol. Divers.; 2009; 13; 47-52.

- Elinson, M.N.; Ilovaisky, A.I.; Demchuk, D.V.; Belyakov, P.A.; Ogibin, Yu.N.; Nikishin, G.I. "The electrocatalytic cascade assembling of isatins, malononitirle and N-alkylbarbiturates: an efficient multicomponent approach to the [spiro[indole-3,5'-pyrano[2,3-*d*]pyrimidine] framework". // Electrochim. *Acta*; 2008; 53; 8346-8350.
- Elinson, M.N.; Merkulova, V.M.; Ilovaisky, A.I.; Demchuk, D.V.; Belyakov, P.A.; Nikishin, G.I. "Electrochemically induced multicomponent assembling of isatins, 4-hydroxyquinolin-2(1*H*)-one and malononitrile: a convenient and efficient way to functionalized spirocyclic [indole-3,4'-pyrano[3,2-*c*]quinoline] scaffold". // Mol. Divers.; 2010; 14; 833-839.
- Veisi, H.; Vafajoo, Z.; Maleki, B.; Maghsoodlou, M.T. "Facile and convenient synthesis of 5-arylalkylidenerhodanines by electrocatalytic crossed aldol condensation". // Phosphorus, Sulfur, and Silicon; 2013;188; 672-677.
- Zhang, Z.-Z.; Zhang, N.-T.; Hu, L.-M.; Wei, Z.-Q.; Zeng, C.C.; Zhong, R.G.; She, Y.-B. "Electrochemically induced cascade Knoevenagel-Michael reactions of tetronic acid and aldehydes: synthesis of methylenebistetronic acids". // RSC Advances; 2011; 1; 1383-1388.
- Kefayati, H.; Homayoon, S.; Kazemi-Rad, R.; Delafrooz, A. "Electrocatalytic multicomponent assembling of phthalhydrazide, aldehydes and malononitrile: an efficient approach to 1*H*-pyrazolo[1,2-*b*]phthalazine-5,10-diones". // *C. R. Chimie*, in press, **2014**, doi: 10.1016/j.crci.2013.09.017.
- Sobhani, S.; Nasseri, R.; Honarmand, M. "2-Hydroxyethylammonium acetate as a reusable and cost-effective ionic liquid for the efficient synthesis of bis(pyrazolyl)methanes and 2-pyrazoly-1-nitroalkanes". // Canad. J. Chem.; 2012; 90; 798-804.
- Nikham, K.; Habibabad, M.S.; Deris, A.; Aenjamshid, N. "Preparation of silica-bonded N-propyltriethylenetetramine as a recyclable solid base catalyst for the synthesis of 4,4'-(arylmethylene)bis(1*H*-pyrazol-5-ols)". // Monatsh. Chem.; 2013; 144; 987-992.

- 35. Phatangare, K.R.; Padalkar, V.S.; Gupta, V.D.; Patil, V.S.; Umape, P.G.; Sekar, N. "Phosphomolybdic acid: an efficient and recyclabel solid acid catalyst for the synthesis of 4,4'-(arylmethylene)bis(1*H*-pyrazol-5-ols)". // Synth. *Commun.*; 2012; 42; 1349-1358.
- 36. Wang. W.; Wang, S.-X.; Qin, X.-Y.; Li, J.T. "Reaction of aldehydes and pyrazolones in the presence of sodium dodecyl sulfate in aqueous media". // *Synth. Commun.*; 2005; 35; 1263-1270.
- 37. Moosavi-Zare, A.R.; Zolfigol, M.A.; Zarei, M.; Zare, A.; Khakyzadeh, V.; Hasaninejad, A. "Design, characterization and application of new ionic liquid 1-sulfopyridinium chloride as an efficient catalyst for tandem Knoevenagel-Michael reaction of 3-methyl-1-phenyl-1*H*-pyrazol-5(4*H*)-one with aldehydes". // Appl. Cat. A; 2013; 467; 61-68.
- Nilesh, P.T.; Tiwari, G.B.; Karade, N.N. "Un-catalyzed tandem Knoevenagel-Michael reaction for the synthesis of 4,4'-(arylmethylene)bis(1*H*-pyrazol-5-ols) in aqueous medium". // Chin. Chem. Lett.; 2011; 22; 1415-1418.
- Sobhani, S.; Safaei, E.; Hasaninejad, A.-R.; Rezazadeh, S. "An eco-friendly procedure for the synthesis of bis(indolyl)methanes in aqueous media". // J. Organomet. Chem.; 2009; 694; 3027-3031.
- 40. Mosaddegh, E.; Hassankhani, A.; Baghizadeh, A. "Cellulose sulfuric acid as a new, biodegradable and environmentally friendly bio-polymer for synthesis of 4,4'-(arylmethylene)bis(3-methyl-1-phenyl-1*H*-pyrazol-5-ols)". // J. Chil. Chem. Soc.; 2010; 55; 419-420.
- 41. Nikham, K.; Saberi, D.; Sadegheyan, M.; Deris, A. "Silica-bonded S-sulfonic acid: an efficient and recyclable solid acid catalyst for the synthesis of 4,4'- (arylmethylene)bis(1*H*-pyrazol-5-ols)". // *Tetrahedron Lett.*; 2010; 51; 692-694.
- 42. Nikham, K.; Mirzaee, S. "Silica sulfuric acid, an efficient and recyclable solid acid catalyst for the synthesis of 4,4'-(arylmethylene)bis(1*H*-pyrazol-5-ols)". // *Synth. Commun.*; 2011; *41*; 2403-2413.

- 43. Hasaninejad, A.; Shekouhy, M.; Zare, A.; Ghattali, S.M.S.H.; Golzar, N. "PEG-SO₃H as a new, highly efficient and homogeneous polymeric catalyst for the synthesis of bis(indolyl)methanes and 4,4'-(arylmethylene)bis(3-methyl-1-phenyl-1*H*-pyrazol-5-ols) in water". // *J. Iran. Chem. Soc.*; 2011; 8; 411-423.
- 44. Tayebi, S.; Baghernejad, M.; Saberi, D.; Nikham, K. "Sulfuric acid ([3-(3-silicapropyl)sulfanyl]propyl)ester as a recyclable catalyst for the synthesis of 4,4'-(arylmethylene)bis(1*H*-pyrazol-5-ols)". // Chin. J. Catal.; 2011; 32; 1477-1483.
- Kuarm, B.S.; Rajitha, B. "Xanthan sulfuric acid: an efficient, biosupported, and recyclable solid acid catalyst for the synthesis of 4,4'-(arylmethylene)bis(1*H*pyrazol-5-ols)". // Synth. Commun.; 2012; 42; 2382-2387.
- 46. Sujatha, K.; Shanthi, G.; Selvam, N.P.; Manoharan, S.; Perumal, P.T.; Rajendran, M. "Synthesis and antiviral activity of 4,4'-(arylmethylene)bis(1*H*pyrazol-5-ols) against peste des petits ruminant virus (PPRV)". // *Bioorg. Med. Chem. Lett.*; **2009**; *19*; 4501-4503.
- Elinson, M.N.; Nasybullin, R.F.; Nikishin, G.I. "Sodium acetate catalyzed tandem Knoevenagel-Michael multicomponent reaction of aldehydes, 2-pyrazolin-5-ones, and cyano-functionalized C-H acids: facile and afficient way to 3-(5-hydroxypyrazol-4-yl)-3-aryl-propionitriles". // C. R. Chimie; 2013; 16; 786-794.
- Jin, T.-S.; Wang, A.-Q.; Wang, X.; Zhang, J.-S.; Li, T.-S. "A clean one-pot synthesis of tetrahydrobenzo[b]pyran derivatives catalyzed by hexadecyltrimethyl ammonium bromide in aqueous media". // Synlett; 2004; 871-873.
- 49. Shi, D.; Mou, J.; Zhuang, Q.; Wang, X. "One-pot synthesis of 2-amino-4-aryl-5-oxo-5,6,7,8-tetrahydro-4*H*-1-benzopyran-3-carbonitriles in aqueous media".
 // J. Chem. Res.; 2004; 821-823.
- 50. Gao, S.; Tsai, C.H.; Tseng, C.; Yao, C.-F. "Fluoride ion catalyzed multicomponent reactions for efficient synthesis of 4*H*-chromene and *N*-

arylquinoline derivatives in aqueous media". // *Tetrahedron*; **2008**; *64*; 9143-9149.

- Undale, K.A.; Park, Y.K.; Park, K.; Dagade, D.H.; Pore, D.M. "A revisit to the Hantzsch reaction: unexpected formation of tetrahydrobenzo[*b*]pyrans beyond polyhydroquinolines". // Synlett; 2011; 791-796.
- Dekamin, M.G.; Eslami, M.; Maleki, A. "Potassium phthalimide-*N*-oxyl: a novel, efficient and simple organocatalyst for the one-pot three-component synthesis of various 2-amino-4*H*-chromene derivatives in water". // *Tetrahedron*; 2013; 69; 1074-1085.
- 53. Hasaninejad, A.; Shekouhy, M.; Golzar, N.; Zare, A.; Doroodmand, M.M. "Silica-bonded *n*-propyl-4-aza-1-azobicyclo[2.2.2]octane chloride (SB-DABCO): a highly efficient, reusable and new heterogeneous catalyst for the synthesis of 4*H*-benzo[*b*]pyran derivatives". // *Appl. Catal. A*; 2011; 402; 11-22.
- 54. Khurana, J.M.; Nand, B.; Saluja, P. "DBU: a highly efficient catalyst for one pot synthesis of substituted 3,4-dihydropyrano[3,2-*c*]chromenes, dihydropyrano[4,3-*b*]pyranes, 2-amino-4*H*-benzo[*h*]chromenes, and 2-amino-4*H*-benzo[*g*]chromenes in aqueous medium". // *Tetrahedron*; 2010; 66; 5637-5641.
- 55. Wang, X.-S.; Zeng, Z.-S.; Shi, D.-Q.; Wei, X.-Y.; Zong, Z.-M. "One-step synthesis of 2-amino-3-cyano-4-aryl-1,4,5,6-tetrahydropyrano[3,2-*c*]quinolin-5-one derivatives using KF-Al₂O₃ as catalyst". // Synth. Commun.; 2004; 34; 3021-3027.
- 56. Magedov, I.V.; Manpadi, M.; Ogasawara, M.A.; Dhawan, A.S.; Rogelj, S.; Van slambrouck, S.; Steelant, W.F.A.; Evdokimov, N.M.; Uglinskii, P.Y.; Elias, E.M.; Knee, E.J.; Tongwa, P.; Antipin, M.Yu.; Kornienko, A. "Structural simplification of bioactive natural products with multicomponent synthesis. 2. Antiproliferative and antitubulin activities of pyrano[3,2-*c*]pyridines and pyrano[3,2-*c*]quinolones". // J. Med. Chem.; **2008**; *51*; 2561-2570.

- Lei, M.; Ma, L.; Lihong, H. "A green, efficient, and rapid procedure for the synthesis of 2-amino-3-cyano-1,4,5,6-tetrahydropyrano[3,2-*c*]quinolin-5-one derivatives catalyzed by ammonium acetate". // *Tetrahedron Lett.*; 2011; 52; 2597-2600.
- Sadeghi, B.; Hassanabadi, A.; Bidaki, S. "Synthesis of nanoparticles silica supported sulfuric acid (NPs SiO₂-H₂SO₄): a solid phase acidic catalyst for onepot synthesis of 4*H*-chromene derivatives". // J. Chem. Res.; 2011; 35; 666-668.
- 59. Banerjee, S.; Horn, A.; Khatri, H.; Sereda, G. "A green one-pot multicomponent synthesis of 4*H*-pyrans and polysubstituted aniline derivatives of biological, pharmacological, and optical applications using silica nanoparticles as reusable catalyst". // *Tetrahedron Lett.*; 2011; 52; 1878-1881.
- Xu, J.-C.; Li, W.-M.; Zheng, H.; Lai, Y.-F.; Zhang, P.-F. "One-pot synthesis of tetrahydrochromene derivatives catalyzed by lipase". // *Tetrahedron*; 2011; 67; 9582-9587.
- 61. Roudier, J.F.; Foucaud, A. "A convenient synthesis of 4*H*-chromenes". // *Synthesis*; **1984**; 159-160.
- Costa, M.; Areias, F.; Abrunhosa, L.; Venancio, A.; Proenca, F. "The condensation of salicylaldehydes and malononitrile revisited: synthesis of new dimeric chromene derivatives". // J. Org. Chem.; 2008; 73; 1954-1962.
- Kulkarni, M.A.; Pandit, K.S.; Desai, U.V.; Lad, U.P.; Wadgaonkar, P.P.
 "Diethylamine: a smart organocatalyst in eco-safe and diastereoselective synthesis of medicinally privileged 2-amino-4*H*-chromene scaffold at ambient temperature". // C. R. Chimie; 2013; 16; 689-695.
- Elinson, M.N.; Medvedev, M.G.; Ilovaisky, A.I.; Merkulova, V.M.; Zaimovskaya, T.A.; Nikishin, G.I. "Solvent-free cascade assembling of salicylic aldehydes and malononitrile: rapid and efficient approach to 2-amino-4*H*-chromene scaffold". // Mendeleev Commun.; 2013; 23; 94-95.

- 65. Fujimoto, A.; Sakurai, A. "A new selective preparation of 4*H*-chromenes by reaction of alkyl cyanoacetate with 3,5-dibromosalicylaldehyde in the presence of ammonium acetate". // *Synthesis*, **1977**, 871-872.
- Gaikwad, D.S.; Undale, K.A.; Shaikh, T.A.; Pore, D.M. "An efficient multicomponent synthesis of (2-amino-3-cyano-4*H*-chromene-4-yl) phosphonic acid diethyl ester". // C. R. Chimie; 2011; 14; 865-868.
- O'Callaghan, C.N.; McMurry, T.B.; O'Brien, J.E. "Synthetic reactions of 2-(2amino-3-cyano-4*H*-[1]benzopyran-4-yl)propane-1,3-dinitrile with reactive methylene compounds". // J. Chem. Soc. Perkin Trans. 1; 1995; 417-420.
- Yu, N.; Aramini, J.M.; Germann, M.W.; Huang, Z. "Reactions of salicyladehydes with alkyl cyanoacetates on the surface of solid catalysis: synthesis of 4*H*-chromene derivatives". // *Tetrahedron Lett.*; 2000; 41; 6993-6996.
- Curini, M.; Epifano, F.; Chimichi, S.; Montanari, F.; Nocchetti, M.; Rosati, O. "Potassium exchanged layered zirconium phosphate as catalyst in the preparation of 4*H*-chromenes". // *Tetrahedron Lett.*; 2005; 46; 3497-3499.
- Jayashree, P.; Shanthi, G.; Perumal, P.T. "Indium trichloride catalyzed one-pot synthesis of new (2-amino-3-cyano-4*H*-chromen-4-yl) phosphonic acid diethyl ester". // Synlett; 2009; 917-920.
- Kolla, S.R.; Lee, Y.R. "Efficient one-pot synthesis of β-phosphono malonates and 2-amino-4*H*-chromen4-yl phosphonate derivatives by ethylenediamine diacetate-catalyzed three-component reactions". // *Tetrahedron*; **2012**; *68*; 226-237.
- 72. Murthy, S.N.; Madhav, B.; Reddy, V.P.; Nageswar, Y.V.D. "One-pot synthesis of 2-amino-4*H*-chromenyl phosphonate derivatives using β-cyclodextrin as reusable catalyst in water". // *Tetrahedron Lett.*; **2010**; *51*; 3649-3653.
- Rajasekhar, M.; Rao, K.U.M.; Sundar, C.S.; Reddy, N.B.; Nayak, S.K.; Reddy, C.S. "Green synthesis and bioactivity of 2-amino-4*H*-chromen-4-ylphosphonates". // *Chem. Pharm. Bull.*; 2012; 60; 854-858.

- Sobhani, S.; Honarmand, M. "5-Hydroxypentylammonium acetate as a reusable ionic liquid catalyzes tandem Knoevenagel-phospha-Michael reaction of aldehydes, malononitrile and phosphites". // J. Iran. Chem. Soc.; 2012; 9; 661-669.
- 75. Sobhani, S.; Honarmand, M. "Silica-bonded 2-hydroxyethylammonium acetate as an efficient and recyclable catalyst for the synthesis of 2-amino-4*H*chromen-4-yl phosphonates and β-phosphonomalonates". // Catal. Lett.; 2013; 143; 476-485.
- Серия монографий Interbioscreen, "Избранные методы синтеза и модификации гетероциклов" под редакцией В.Г. Карцева. // IBS Press; 2003.
- 77. Iacobucci, G.A.; Sweeny, J.G. "The chemistry of anthocyanins, anthocyanidins and related flavinium salts". // *Tetrahedron*; **1983**; *39*; 3005-3038.
- Bohm, B.A.; Choy, J.B.; Lee, A. Y.-M. "Flavonoids of *balsamorhiza* and *wyethia*". // *Phytochem.*; **1989**; 28; 501-503.
- Parmar, V.S.; Jain, S.C.; Bisht, K.S.; Jain, R.; Taneja, P.; Jha, A.; Tyagi, O.D.; Prasad, A.K.; Wengel, J.; Olsen, C.E.; Boll, P.M. "Phytochemistry of the genus *piper*". // *Phytochem.*; **1997**; *46*; 597-674.
- Sun, W.; Cama, L.D.; Birzin, E.T.; Warrier, S.; Locco, L.; Mosley, R.; Hammond, M.L.; Rohrer, S.P. "6*H*-Benzo[*c*]chromen-6-one derivatives as selective ERβ agonists". // *Bioorg. Med. Chem. Lett.*; 2006; 16; 1468-1472.
- Stachulski, A.V.; Berry, N.G.; Low, A.C.L.; Moores, S.L.; Row, E.; Warhurst, D.C.; Adagu, I.S.; Rossignol, J.-F. "Identification of isoflavone derivatives as effective anticryptosporidial agents *in vitro* and *in vivo*". // J. Med. Chem.; 2006; 49; 1450-1454.
- Garino, C.; Bihel, F.; Pietrancosta, N.; Laras, Y.; Quelever, G.; Woo, I.; Klein, P.; Bain, J.; Boucher, J.-L.; Kraus, J.-L. "New 2-bromomethyl-8-substituted-benzo[*c*]chromen-6-ones. Synthesis and biological properties". // *Bioorg. Med. Chem. Lett.*; 2005; 15; 135-138.

- Leahy, J.J.J.; Golding, B.T.; Griffin, R.J.; Hardcastle, I.R.; Richardson, C.; Rigoreau, L.; Smith, G.C.M. "Identification of a highly potent and selective DNA-dependent protein kinase (DNA-PK) inhibitor (NU7441) by screening chromenone libraries". // Bioorg. Med. Chem. Lett.; 2004; 14; 6083-6087.
- Anderson, D.R.; Hedge, S.; Reinhar, E.; Gomez, L.; Vernier, W.F.; Lee, L.; Liu, S.; Sambandam, A.; Snider, P.A.; Masih, L. "Aminocyanopyridine inhibitors of mitogen activated protein kinase-activated protein kinase 2 (MK-2)". // Bioorg. Med. Chem. Lett.; 2005; 15; 1587-1590.
- 85. Kemnitzer W.; Drewe, J.; Jiang, S.; Zhang, H.; Wang, Y.; Zhao, J.; Jia, S.; Herich, J.; Labreque, D.; Storer, R.; Meerovitch, K.; Bouffard, D.; Rej, R.; Denis, R.; Blais, C.; Lamothe, S.; Attardo, J.; Gourdeau, H.; Tseng, B.; Kasibhatla, S.; Cai, S.X. "Discovery of 4-aryl-4*H*-chromenes as a new series of apoptosis inducers using a cell- and caspase-based high-throughput screening assay. 1. Structure-activity relationship of the 4-aryl group". // J. Med. Chem.; 2004; 47; 6299-6310.
- 86. Kemnitzer, W.; Kasibhatla, S.; Jiang, S.; Zhang, H.; Zhao, J.; Jia, S.; Xu, L.; Crogan-Grandy, C.; Denis, R.; Barriault, N.; Vaillancourt, L.; Charron, S.; Dodd, J.; Attardo, G.; Labreque, D.; Lamothe, S.; Gourdeau, H.; Tseng, B.; Drewe, J.; Cai, S.X. "Discovery of 4-aryl-4*H*-chromenes as a new series of apoptosis inducers using a cell- and caspase-based high-throughput screening assay. 2. Structure-activity relationship of the 7- and 5-, 6-, 8-positions". // *Bioorg. Med. Chem. Lett.*; **2005**; *15*; 4745-4751.
- 87. Patai, S.; Israeli, Y. "The kinetics and mechanisms of carbonyl-methylene condensations. Part VI. The reaction of malononitrile with aromatic aldehydes in water". // J. Chem. Soc.; **1960**; 2025-2030.
- Kokila, M.K.; Nirmala, K.A.; Puttaraja, A.; Kulkarni, M.V.; Shivaprakash, N.C. "Structure of ethyl 2-(2-amino-3-ethoxycarbonyl-4*H*-chromen-4-yl)-2cyanoacetate". // Acta Crystallogr. C; **1992**; 48; 1619-1622.

- Skommer, J.; Wlodkowic, D.; Matto, M.; Eray, M.; Pelkonen, J. "HA 14-1, a small molecule Bcl-2 antagonist, induces apoptosis and modulates action of selected anticancer drugs in follicular lymphoma B cells". // Leukemia Res.; 2006; 30; 322-331.
- 90. Patel, D.V.; Rielly-Gauvin, K.; Ryono, D. E. "Preparation of peptidic αhydroxy phosphonates a new class of transition state analog renin inhibitors". // *Tetrahedron Lett.*; **1990**; *31*; 5587-5590.
- 91. Kafarski, B.; Lejczak, B. "Biological activity of aminophosphonic acids". // *Phosphorus, Sulfur, Silicon Relat. Elem.*; **1991**; *63*; 193-215.
- 92. Stowasser, B.; Budt, K.H.; Li, J.Q.; Peyman, A.; Ruppert, D. "New hybrid transition-state analog inhibitors of HIV protease with peripheral C2-symmetry". // Tetrahedron Lett.; 1992; 33; 6625-6628.
- 93. Point, V.; Malla, R.K.; Diomande, S.; Martin, B.P.; Delorme, V.; Carriere, F.; Canaan, S.; Rath, N.P.; Spiling, C.D.; Cavalier, J.F.; "Synthesis and kinetic evaluation of cyclophostin and cyclipostins phosphonate analogs as selective and potent inhibitors of microbial lipases". // J. Med. Chem.; 2012; 55, 10204-10219.
- 94. Hockova, D.; Keough, D.T.; Janeba, Z.; Wang, T.H.; de Jersey, J.; Guddat, L.W. "Synthesis of novel N-branched acyclic nucleoside phosphonates as potent and selective inhibitors of human, *Plasmodium falciparum* and *Plasmodium vivax* 6-oxopurine phosphoribosyltransferases". // J. Med. Chem.; 2012; 55; 6209-6223.
- 95. Corbett, M.T.; Uraguchi, D.; Ooi, T.; Johnson, J.S. "Base-catalyzed direct aldonization of alpha-alkyl-alpha-hydroxy trialkyl phosphonoacetates". // Angew. Chem. Int. Ed.; 2012; 51; 4685-4689.
- 96. Goulioukina, N.S.; Shergold, I.A.; Bondarenko, G.N.; Ilyin, M.M.; Davankov, V.A.; Beletskaya, I.P. "Palladium-catalyzed asymmetric hydrogenation of *N*-hydroxy-alpha-imino phosphonates using Bronsted acid as activator: the first

catalytic enantioselective approach to chiral *N*-hydroxy-alpha-amino phosphonates". // *Adv. Synth. Catal.*; **2012**; *354*; 2727-2733.

- 97. Kalla, R.M.N.; Choi, J.-S.; Yoo, J.-W.; Byeon, S.J.; Heo, M.S.; Kim, I. "Synthesis of 2-amino-3-cyano-4*H*-chromen-4-ylphosphonates and their anticancer properties". // Eur. J. Med. Chem.; 2014; 76; 61-66.
- Sugiura, S.; Ohno, S.; Ohtani, O.; Izumi, K.; Kitamikado, T.; Asai, H.; Kato, K. "Syntheses and antiinflammatory and hypnotic activity of 5-alkoxy-3-(*N*-substituted carbamoyl)-1-phenylpyrazoles". // *J. Med. Chem.*; 1977; 20; 80-85.
- Behr, L.C.; Fusco, R.; Jarboe, C.H. In "The chemistry of heterocyclic compounds, pyrazoles, pyrazolines, pyrazolidines, indazoles and condensed rings", под редакцией Weissberger, A.; Interscience Publishers; New York; 1997.
- 100. Rosiere, C.C.; Grossman, M.I. "An analog of histamine that stimulates gastric acid secretion without other actions of histamine". // *Science*, **1951**; *113*; 651.
- 101. Bailey, D.M.; Hansen, P.E.; Hlavac, A.G.; Baizman, E.R.; Pearl, J.; Defelice, A.F.; Feigenson, M.E. "3,4-Diphenyl-1*H*-pyrazole-1-propanamine antidepressants". // J. Med. Chem.; 1985; 28; 256-260.
- 102. Шаранин, Ю.А.; Промоненков, В.К.; Шаранина, Л.Г. "Реакции циклизации нитрилов. IV. Реакция арилиденмалонононитрила с 1,3-дикарбонильными соединениями". // Журн. Орган. Химии; 1982; 18; 625-629.
- 103. Шаранина, Л.Г.; Промоненков, В.К.; Марштупа, В.П.; Пащенко, А.В.; Пузанова, В.В.; Шаранин, Ю.А.; Клюев, Н.А.; Гусев, Л.Ф.; Гнатусина, А.П. "6-Амино-5-циано-1*H*,4*H*-пиразоло[3,4-*b*]пираны". // Химия Гетероцикл. Соединений; **1982**; 801-806.
- 104. Шаранин, Ю.А.; Шаранина, Л.Г.; Пузанова, В.В. "Реакции циклизации нитрилов. VII. Синтез 6-амино-4-арил-3-метил-5-циано-1*H*,4*H*-пиразоло[4,3-*b*]пиранов". // Журн. Орган. Химии; **1983**; *19*; 2609-2615.

- 105. Kees, K.L.; Fitzgerald, J.J.; Steiner, K.E.; Mattes, J.F.; Mihan, B.; Tosi, T.; Mondoro, D.; McCaleb, M.L. "New Potent Antihyperglycemic Agents in db/db Mice: Synthesis and Structure–Activity Relationship Studies of (4-Substituted benzyl)(trifluoromethyl)pyrazoles and -pyrazolones". // J. Med. Chem.; 1996; 39; 3920-3928.
- 106. Wise, L.D.; Butler, D.E.; DeWald, H.A.; Lustgarden, D.M.; Pattison, I.C.; Schweiss, D.N.; Coughenour, L.L.; Downs, D.A.; Heffner, T.G.; Pugsley, T.A. "1,3-Dialkyl-4-(iminoarylmethyl)-1*H*-pyrazol-5-ols. A series of novel potential antipsychotic agents". // J. Med. Chem.; **1987**; 30; 1807-1812.
- 107. Van Herk, T.; Brussee, J.; van den Nieuwendijk, A.M.C.H.; van der Klein, P.A.M.; Jzerman, A.P.; Stannek, C.; Burmeister, A.; Lorenzen, A. "Pyrazole Derivatives as Partial Agonists for the Nicotinic Acid Receptor". // J. Med. Chem.; 2003; 46; 3945-3951.
- 108. Yamazaki, K.; Kusunose, N.; Fujita, K.; Sato, H.; Asano, S.; Dan, A.; Kanaoka, M. "Identification of phosphodiesterase-1 and 5 dual inhibitors by a ligand-based virtual screening optimized for lead evolution". // Bioorg. Med. Chem. Lett.; 2006; 16; 1371-1379.
- 109. Konkoy, C.S.; Fick, D.B.; Cai, S.X.; Lan, N.C.; Keana, J.F.W. "Substituted 5-oxo-5,6,7,8-tetrahydro-4*H*-1-benzopyrans and benzothiopyrans and the use thereof as potentiators of AMPA". // *PCT Int. Appl.* **2000**, WO 0075123.
- 110. Wang, S.; Milne, G.W.A.; Yang, X.; Posey, I.J.; Nicklaus, M.C.; Graham, L.; Rice, W.G. "Discovery of novel, non-peptide HIV-1 protease inhibitors by pharmacophore searching". // J. Med. Chem.; 1996; 39; 2047-2054.
- 111. Mazumder, A.; Wang, S.; Neamati, N.; Nicklaus, M.C.; Sunder, S.; Chen, J.; Milne, G.W.A.; Rice, W.G.; Burke, J.T.R.; Pommier, Y. "Antiretroviral agents as inhibitors of both Human Immunodeficiency Virus Type 1 integrase and protease". // J. Med. Chem.; 1996; 39; 2472-2481.
- 112. Michael, J.P. "Quinoline, quinazoline and acridone alkaloids". // Nat. Prod. Rep.; 2008; 25; 166-187.

- 113. Kamperdick, C.; Van, N.H.; Van, S.T.; Adam, G. "Bisquinolinone alkaloids from *Melicope ptelefolia*". // *Phytochem.*, **1999**; **50**; 177-181.
- 114. Nasseri, M.A.; Sadeghzadeh, S.M. "A highly active FeN₃-SiO₂ magnetic nanoparticles catalyst for the preparation of 4*H*-benzo[*b*]pyrans and spirooxindoles under mild conditions". // *J. Iran. Chem. Soc.*; **2013**; *10*; 1047-1056.
- 115. Fan, X.; Feng, D.; Qu, Y.; Zhang, X.; Wang, J.; Loiseau, P.M.; Graciela, A.; Snoeck, R.; De Clerq, E. "Practical and efficient synthesis of pyrano[3,2-*c*]pyridine, pyrano[4,3-*b*]pyran and their hybrids with nucleoside as potential antiviral and antileishmanial agents". // *Bioorg. Med. Chem. Lett.*; 2010; 20; 809-813.
- 116. Stoyanov, E.V.; Ivanov, I.C.; Heber, D. "General method for the preparation of substituted 2-amino-4*H*,5*H*-pyrano[4,3-*b*]pyran-5-ones and 2-amino-4*H*-pyrano[3,2-*c*]pyridine-5-ones". // *Molecules*; 2000; 5; 19-32.
- 117. Elagamey, A.G.A.; Sawllim, S.Z.; El-Taweel, F.M.A.; Elnagdi, M.H. "Nitriles in heterocyclic synthesis: novel syntheses of benzo[b]pyrans, naphtho[1,2-b]pyrans, naphtha[2,1-b]pyrans, pyrano[3,2-h]quinolines and pyrano[3,2-c]quinolines". // Coll. Czech. Chem. Commun.; **1988**; 53; 1534-1538.