ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ ОРГАНИЧЕСКОЙ ХИМИИ им. Н.Д.ЗЕЛИНСКОГО РОССИЙСКОЙ АКАДЕМИИ НАУК

На правах рукописи

Виноградов Александр Андреевич

Синтез и исследование строения и каталитической активности комплексов лантанидов с α-арилзамещенными карбоксилатными лигандами на примере стереоспецифической полимеризации диенов-1,3

02.00.03 – Органическая химия 02.00.08 – Химия элементоорганических соединений

АВТОРЕФЕРАТ Диссертации на соискание ученой степени Кандидата химических наук

Москва - 2013

Работа выполнена в отделе 58 Федерального государственного бюджетного учреждения науки Института органической химии им. Н.Д. Зелинского Российской академии наук (ИОХ РАН)

Научный руководитель:	кандидат химических наук, доцент Ройтерштейн Дмитрий Михайлович
Официальные оппоненты:	доктор химических наук, профессор Вацадзе Сергей Зурабович (Химический факультет Московского государственного университета имени М.В. Ломоносова)
	кандидат химических наук Перекалин Дмитрий Сергеевич (Федеральное государственное бюджетное учреждение науки Институт элементоорганических соединений имени А.Н.Несмеянова РАН)
Ведущая организация:	Федеральное государственное бюджетное учреждение науки Институт металлоорганической химии им. Г.А. Разуваева РАН.

Защита состоится «<u>24</u>» <u>декабря</u> 2013 г. в <u>11</u> часов на заседании диссертационного совета Д 002.222.01 при Федеральном государственном бюджетном учреждении науки Институте органической химии им. Н.Д. Зелинского РАН (ИОХ РАН) по адресу: 119991, Москва, Ленинский проспект, 47 (secretary@ioc.ac.ru).

С диссертацией можно ознакомиться в библиотеке ИОХ РАН.

Автореферат разослан «<u>22</u>» <u>ноября</u> 2013 г.

Ученый секретарь диссертационного совета Д 002.222.01 доктор химических наук

П.А. Родиновская

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность проблемы. Изучение каталитических систем стереоспецифической полимеризации изопрена и бутадиена представляет значительный интерес, поскольку этот процесс лежит в основе промышленного получения синтетических каучуков. Металлокомплексные катализаторы на основе лантанидов проявляют лучшую каталитическую активность, позволяя получать полимеры с высокой стереорегулярностью, что определяет такие механические свойства, как высокая эластичность, износостойкость и низкое выделение тепла при механическом воздействии. Получаемые полимеры практически не содержат низкомолекулярных олигомеров, что отвечает предъявляемым строгим экологическим требованиям. В формировании катализатора используют алкоголяты, органические фосфаты или карбоксилаты лантанидов. Наибольшее распространение получили трехкомпонентные каталитические системы на основе неодимовых солей органических кислот с разветвленной углеводородной цепью (изооктаноаты и версататы¹). В этом случае в состав каталитической системы входят карбоксилат неодима, алкилирующий агент (Al(i-Bu)₃ или HAl(i-Bu)₂) и источник хлорид иона – этилалюминийсесквихлорид.

Однако, все установленные к настоящему времени закономерности протекания полимеризации на таких каталитических системах носят эмпирический характер. Причиной этого является отсутствие информации о строении как активных частиц, так и их прекурсоров. Карбоксилатные комплексы неодима, используемые в промышленности, и продукты их взаимодействия с алюминийорганическими соединениями (активный катализатор) представляют собой вязкие жидкости, что затрудняет исследование их строения.

Выбор объекта исследования в данной работе обусловлен с одной стороны большим значением данных каталитических систем, а с другой стороны отсутствием достоверной информации о механизме их действия.

<u>Цель работы.</u> Дизайн и синтез органических производных лантанидов, моделирующих высокоактивные каталитические системы на основе карбоксилатов неодима. Установление строения прекурсоров и интермедиатов каталитических систем. Получение представлений о механизме стереоспецифической полимеризации диенов-1,3.

<u>Научная новизна и практическая значимость.</u> В настоящей работе разработан простой эффективный метод получения безводных карбоксилатных комплексов лантанидов. Впервые синтезированы и исследованы комплексы с ди- и трифенилацетатными лигандами. Показано

¹ Версатовая кислота - смесь α-диалкилзамещенных пропановых кислот состава С₉H₁₉COOH.

образование трех различных структурных типов трифенилацетатных комплексов La и Nd (моноядерных, биядерных гомобиметаллических и биядерных гетеробиметаллических).

Показано, что каталитические системы на основе ди- и трифенилацетатных комплексов лантанидов могут рассматриваться в качестве моделей современных катализаторов, применяемых в промышленности в стереоспецифической полимеризации диенов-1,3.

Впервые получены тетраядерные лантанид-алюминиевые комплексы $[Ln(Ph_3CCOO)_2]_2[AlR_4]_2$, $(Ln = La, Nd; R = CH_3-, C_2H_5-)$ строение которых было изучено в твердой фазе методом рентгеноструктурного анализа (PCA) и в растворе методом ЯМР спектроскопии. Исследование их каталитической активности, а также структуры получаемого полибутадиена позволило получить новые сведения о механизме полимеризации сопряженных диенов-1,3.

Варьируя полигетеродентатные циклические лиганды в трифенилацетатных комплексах и меняя размер алкилалюминатного фрагмента в гетеробиметаллических комплексах, удалось зафиксировать структурные различия между родственными комплексами La и Nd, которые позволяют объяснить различия в их каталитической активности.

<u>Апробация работы и публикации.</u> Материалы диссертационной работы докладывались на V Молодежной конференция ИОХ РАН в 2012 г. и на XXIV Международной конференции "TdSE Terrae Rarae" в Германии в 2011 г. Основное содержание диссертационной работы изложено в 8 публикациях — 1 статье и 7 тезисах докладов.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проекты 10-03-00953-а и 11-03-00043-а) и ОХНМ РАН (программа 1).

<u>Объем и структура диссертационной работы.</u> Диссертация состоит из введения, литературного обзора, обсуждения результатов, экспериментальной части, выводов, списка цитируемой литературы (149 ссылок) и приложения. Материал изложен на 126 страницах печатного текста, содержит 78 рисунков, 17 таблиц и 42 схемы.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Ди- и трифенилацетатные лиганды имеют α-разветвленный углеродный скелет и поэтому формально их можно рассматривать как аналоги версатат-аниона (рис. 1). Предполагалось, что замена алкильных заместителей на фенильные в карбоксилатном лиганде должна привести к формированию более жестких структур, по сравнению с версататами и их аналогами, что, в свою очередь, позволит выделить и изучить строение предшественников каталитической системы, а также интермедиатов, образующихся в ходе формирования катализатора.

Рисунок 1. а) Версатат-анион, b) ди и трифенилацетат анионы.

Из литературы известно, что строение органических производных лантанидов зависит от ионного радиуса катиона металла. Чтобы проследить структурные различия в ди- и трифенилацетатных комплексах в ряду f-элементов, были выбраны редкоземельные элементы с различающимися величинами ионных радиусов, такие как La, Nd и Eu.

1. Дифенилацетаты лантанидов

Реакция тетрагидрофуранатов хлоридов лантанидов в растворе метанола с тремя эквивалентами дифенилацетата натрия, который получается in situ из дифенилуксусной кислоты и метилата натрия, приводит к формированию нерастворимых в метаноле комплексов лантанидов, дальнейшее действие на них THF приводит к соединениям с общей формулой $[Ln(Ph_2CHCOO)_3(THF)_m]_2$ (Ln = La (1), m = 2; Nd (2), m= 2; Eu (3), m = 1; схема 1 (a,b)).

Схема 1. Получение дифенилацетатных комплексов редкоземельных элементов.

Образующийся первоначально комплекс { $Ln(Ph_2CHCOO)_3$ } (схема 1) не был охарактеризован, так как его было невозможно отделить от NaCl, образующегося в ходе реакции. Использование диэтиламина вместо метилата натрия в качестве основания, позволило выделить соединения состава [$Ln(Ph_2CHCOO)_3(MeOH)_n$] (Ln = Nd (4), n = 2.5; Eu (5), n = 1.5; схема 1 (с)). Действие THF на 4 и 5 приводит к 2 и 3 соответственно.

Спектр ЯМР ¹Н комплекса **1** содержит мультиплет протонов 12 фенильных групп и уширенный синглет бензильного протона. Так как спектры ЯМР не дают представления о строении комплексов, они были изучены методом ИК спектроскопии и рентгеноструктурного анализа (PCA). Анализ ИК спектров 4 и 5 показал, что симметрия лигандного окружения катиона лантанида в 4 выше чем в 5, это следует из того, что полоса при 1556 см⁻¹ не расщеплена, в отличие от полосы в области 1561 см⁻¹ в спектре 5. Можно предположить, что соединения 4 и 5 построены в виде моноядерного комплекса который содержит в случае 4 только κ^2 -координированные дифенилацетатные лиганды, а в случае 5 содержит κ^1 - и κ^2 -координированные дифенилацетатные лиганды.

Строение дифенилацетатных комплексов лантана 1, неодима 2, $[Nd(Ph_2CHCOO)_3(Dioxane)_2]_2$ (6; получен перекристаллизацией 2 из диоксана) и европия $[Eu(Ph_2CHCOO)_3(DME)]_2$ (7; получен перекристаллизацией 3 из диметоксиэтана) установлено методом PCA. Дифенилацетаты 1, 2, 6, 7 построены в виде биядерных комплексов (рис. 2). Атомы металла соединены четырьмя мостиковыми карбоксилатными лигандами, два координированы по $\mu_2 - \kappa^1$: κ^1 -типу, а два других по $\mu_2 - \kappa^2$: κ^1 -типу, и терминальными О донорными лигандами (THF в 1 и 2, диоксан в 6 и DME в 7).

Рисунок 2. Строение комплексов a) **1** (Ln = La, solv = THF), **2**(Ln=Nd; solv = THF), **6** (Ln = Nd, solv = Dioxane) и b) **7** Атомы водорода и атомы углерода фенильных групп не показаны.

	1 (La)	2 (Nd)	6 (Nd)	7 (Eu)
Ln–O (THF, dioxane, DME)	2.619(3), 2.647(3)	2.575(1), 2.606(1)	2.6064(9), 2.550(1)	2.518(1), 2.579(1)
Ln–O (ĸ ² -Ph ₂ CHCOO)	2.605(3) - 2.537(3)	2.552(1) - 2.476(2)	2.5036(9)- 2.504(1)	2.424(1), 2.572(1)
$ Ln-O (\mu_2-\kappa^1:\kappa^2-Ph_2CHCOO) $	2.717(3), 2.586(3), 2.470(3)	2.714(1), 2.398(1), 2.500(1)	2.6263(9), 2.4105(9), 2.4967(9)	2.278(1), 2.422(1)
$\begin{array}{c} Ln-O\\ (\mu_2 \text{-} \kappa^1 \text{:} \kappa^1 \text{-} Ph_2 CHCOO) \end{array}$	2.444(3), 2.468(3)	2.403(1), 2.390(1)	2.416(1), 2.4192(9)	2.343(1) - 2.567(1)

Таблица 1. Основные структурные параметры 1, 2, 6 и 7.

Таким образом, можно предположить, что природа растворителя существенно влияет на степень ассоциации комплексов. Замена сольватных молекул метанола в моноядерных 4 и 5 на ТНF или DME приводит к 2 и 7 соответственно.

Для кристаллов **2** удалось провести прецизионный рентгенодифракционный эксперимент,² качество которого было определено, в частности, при помощи анализа карт деформационной электронной плотности (ДЭП, рис. 3). Проведенный топологический анализ экспериментальной функции электронной плотности с привлечением теории Р. Бейдера «Атомы в Молекулах» позволил оценить энергию взаимодействия катиона неодима с органическими лигандами на полуколичественном уровне.³

Рисунок 3. Распределение ДЭП в областях химического связывания атомов Nd с мостиковыми (а) и полумостиковыми (b) Ph₂CHCOO⁻ лигандами.

	d, Å	Е _{взаим} , ккал∙моль ⁻¹	$\Sigma \{ E_{B340M.} \}$, ккал·моль ⁻¹
Nd(1)–O(2)	2.4761(9)	16.7	$20 (rc^2 \text{ PbCHCOO})$
Nd(1)–O(1)	2.5542(8)	12.3	$29(\mathbf{k} - \text{FIICHCOO})$
Nd(1)–O(3)	2.4025(7)	19.8	40.1 (u, $r^{1}r^{1}$ Ph CHCOO)
Nd(1)-O(4A)	2.3908(7)	20.3	$40.1 (\mu_2 - \kappa \cdot \kappa - r \ln_2 C \Pi C O O)$
Nd(1)–O(5)	2.3961(7)	19.6	
Nd(1)-O(6A)	2.4985(8)	14.8	42.1 (μ_2 - κ^1 : κ^2 -Ph ₂ CHCOO)
Nd(1)-O(5A)	2.7136(8)	7.7	
Nd(1)–O(1S)	2.5751(7)	11.0	11.0 (THF)
Nd(1)–O(2S)	2.6083(8)	9.7	9.7 (THF)

Таблица 2. Энергия и длина связей Nd-O 2 (Е_{взаим} = энергия связи Nd- O).

²Прецизионный РСА, расчет топологических характеристик и энергий связей был осуществлен сотрудниками лаб. РСИ №205 Института элементоорганических соединений им. А.Н. Несмеянова РАН.

³ Espinosa E., Alkorta I., Rozas I., Elguero J., Molins E. // Chem. Phys. Letts., **2001**, Vol. 336, pp. 457–461; Borissova A.O., Korlyukov A.A., Antipin M.Yu., Lyssenko K.A. // J. Phys. Chem. A, **2008**, Vol. 112, pp. 11519–11522

Суммарная энергия взаимодействий Nd-O для мостикового Ph₂CHCOO (O(3), O(4A)) и полумостикового Ph₂CHCOO⁻ (O(4A), O(5A), O(6A)) составляет 40.1 и 42.1 соответственно (таблица 2). В то же время, суммарная энергия связей Nd-O с терминальным Ph₂CHCOO⁻ (O(2), O(1)) значительно ниже и равна 29 ккал/моль. Энергия взаимодействия катиона неодима с молекулами тетрагидрофурана составляет лишь 9.7 и 11.0 ккал/моль. Таким образом, можно электронной заключить, что распределение плотности (в частности, прочность координационных связей) полностью согласуется с геометрическими характеристиками связей Nd-O, полученных из PCA, а так же с большей лабильностью связей металл-терминальный лиганд: действительно, 2 легко трансформируется в 6.

2. Трифенилацетаты лантанидов

2.1. Синтез и строение гомолигандных комплексов

Трифенилацетатные комплексы лантанидов получали по схеме, аналогичной той, по которой получали дифенилацетатные комплексы (схема 2). Трифенилацетаты лантанидов, в отличие от **4** и **5**, оказались умеренно растворимыми в метаноле, что позволило выделить и охарактеризовать метанольные аддукты методом PCA [Ln(Ph₃CCOO)₃(CH₃OH)₄](CH₃OH)_x (Ln = La (**8**) x = 1; Nd (**9**) x = 1; Eu (**10**) x = 0)

Схема 2. Синтез трифенилацетатных комплексов (8 - 13).

По данным РСА **8** – **10** изоструктурны имеют моноядерное строение (рис 4 (a)), и содержат два κ^2 - и один κ^1 - координированный Ph₃CCOO⁻ лиганд. Расстояния Ln-O для κ^1 -координированного Ph₃CCOO⁻ меньше чем для κ^2 -координированного Ph₃CCOO⁻ более чем на 0.1 Å (таблица 3). Сосуществование κ^1 - и κ^2 -типа координации терминальных карбоксилатных лигандов сравнительно редко встречается для гомолигандных карбоксилатных соединений лантанидов.

Рисунок 4. Строение комплексов a) 8 - 10 и b) 12 Атомы водорода и некоординированные молекулы растворителя не показаны. Таблица 3. Основные структурные параметры комплексов 8 - 10 и 12.

	8 (La)	9 (Nd)	10 (Eu)	12 (Nd)
Ln–O	2.546(2) –	2.490(1) –	2.455(2)-	2.441(3) –
(κ ² -Ph ₃ CCOO)	2.613(2)	2.556(1)	2.501(2)	2.484(3)
Ln–O (κ ¹ -Ph ₃ CCOO)	2.438(2)	2.388(1)	2.358(2)	-
Ln–O	2.514(2) –	2.450(1) –	2.403(2) –	2.541(3) –
(CH ₃ OH или THF)	2.619(2)	2.556(2)	2.515(2)	2.569(3)

Взаимодействие трифенилацетатных комплексов 8 - 10 с тетрагидрофураном приводит к образованию соединений с общей формулой [Ln(Ph₃CCOO)₃(THF)₃] (Ln = La (11); Nd (12); Eu (13); схема 2). 12 построен в виде моноядерного комплекса (рис. 4(b)). В ходе реакции 9 с ТГФ происходит замена четырех сольватных молекул метанола на три молекулы тетрагидрофурана, также меняется тип координации одного трифенилацетатного лиганда с κ^1 - на κ^2 -, при этом координационное число Nd остается равным девяти. По данным ИК спектроскопии 11, 12 и 13 имеют одинаковое строение.

Нагревание 11 и 12 при 100 ⁰С в динамическом вакууме в течение 10 часов приводит к [Ln(Ph₃CCOO)₃(THF)₂]_x (Ln = La (14); Nd (15); схема 3(а)). В ИК спектре соединений 14 и 15 проявляются полосы поглощения терминальных и мостиковых карбоксилатных лигандов (полосы в районе 1550 см⁻¹ и 1600 см⁻¹ соответственно). Вероятно, 14 и 15 построены в виде димеров или олигомеров. Процесс ассоциации является обратимым: кристаллизация соединений 14 и 14 и 15 из THF, приводит к моноядерным 11 и 12. Кристаллизация соединений 11, 12, а также 14

и **15** из диметоксиэтана приводит к биядерным комплексам $[La(Ph_3CCOO)_3(DME)]_2(THF)$ (**16**) и $[Nd(Ph_3CCOO)_3(DME)]_2(DME)$ (**17**) соответственно (схема 3(b)).

Схема 3. Ассоциация моноядерных комплексов 11 и 12.

Соединения 16 и 17 изоструктурны по даным РСА (рис. 5) и имеют сходное строение с биядерными дифенилацетатными комплексами 1, 2 и 6. Главное отличие заключается в различных типах координации мостиковых карбоксилатных лигандов. В отличие от дифенилацетатов лантанидов, в трифенилацетатных комплексах все мостиковые Ph_3CCOO^- лиганды координированы, по $\mu_2 - \kappa^1 : \kappa^1$ -типу. Большая стерическая нагруженность трифенилацетатных комплексов по сравнению с дифенилацетатными, приводит к уменьшению координационных чисел катионов лантанидов в соединениях 16 и 17 (КЧ = 8), по сравнению с 1, 2 и 6 (КЧ = 9). Важнейшие структурные параметры 16 и 17 представлены в таблице 4.

	16 (La)				
Ln–O (DME)	2.620(1), 2.670(1)	2.567(3), 2.609(3)			
Ln-O (κ^2 -Ph ₃ CCOO ⁻)	2.516(1), 2.544(1)	2.432(3)-2.532(3)			
$ Ln-O (\mu_2-\kappa^1:\kappa^1-Ph_3CCOO^-) $	2.431(1)-2.475(1)	2.362(3)-2.417(3)			

Таблица 4. Основные структурные параметры 16 и 17.

2.2. Синтез и строение трифенилацетатных ate-комплексов

В ходе синтеза 12 был выделен минорный продукт состава $[Nd(Ph_3CCOO)_3][NaPh_3CCOO][Ph_3CCOOH](THF)_5$ (19), который представляет собой *ate*-комплекс. Проведение реакции в соответствующих стехиометрических соотношениях $(Ln^{3+}:Ph_3CCOOH : MeONa = 1 : 5 : 4; схема 4)$, позволило получить комплексы 18 и 19 с выходами 61% и 81% соответственно.

Схема 4. Синтез комплексов 18 и 19.

По данным PCA **18** и **19** изоструктурны (рис. 6), катион лантанида связан с катионом натрия двумя $\mu_2 - \kappa^1 : \kappa^2 - Ph_3CCOO^-$ и одним $\mu_2 - \kappa^1 : \kappa^1 - Ph_3CCOO^-$, атом лантанида дополнительно координирован терминальным трифенилацетатным лигандом по κ^2 -типу и двумя молекулами тетрагидрофурана, катион натрия координирован одной молекулой THF и карбонильным атомом кислорода молекулы трифенилуксусной кислоты.

Рисунок 6. Строение комплексов а) 18, 19 и b) 20а Атомы водорода и атомы углерода фенильных групп не показаны.

Из раствора 16 в смеси ТНF/DME наряду с 16 был получен еще один аtе-комплекс состава [Ln(Ph₃CCOO)₃][NaPh₃CCOO](DME)₂, который кристаллизовался в двух формах: моноклинной (20a) и триклинной (20b) (рис. 7). Несмотря на то, что в 18 в качестве нейтральных лигандов выступают молекулы ТНF и Ph₃CCOOH, а в 20 DME, их структурные параметры близки (таблица 5).

	40 (T)			
	18 (La)	19 (Nd)	20a (La)	20b (La)
$L_{\pi} O(THE DME)$	2.654(2),	2.604(2),	2.625(2),	2.638(2),
Ln–O (IHF, DME)	2.584(2)	2.543(2)	2.656(2)	2.632(2)
	2.522(2),	2.465(2),	2.564(2),	2.564(2),
$Ln = O(\kappa - Pn_3CCOO)$	2.557(2)	2.497(2)	2.526(2)	2.526(2)
1 0				
Ln–O				
$(\mu_2 - \kappa^1 : \kappa^2 - Ph_3CCOO)$				
	2 516(2)	2.461(2)	2.468(2)	2542(2)
Ln-O	2.510(2),	2.401(2),	2.400(2),	2.542(2),
	2.545(2)	2.490(2)	2.580(2)	2.538(2)
$\mathbf{L} = \mathbf{O} \left(\mathbf{N}_{0} \right)$				
LII-O (Na)	2.580(2),	2.540(2),	2.708(2),	2.628(2),
	2.598(2)	2.564(2)	2.597(2)	2.598(2)
Ln–O (μ_2 - κ^1 : κ^1 -Ph ₃ CCOO)	2.519(2)	2.445(2)	2.397(2)	2.425(2)

Таблица 5. Основные структурные параметры 18-20а, b.

Таким образом, мы установили, что тривиальная, на первый взгляд, реакция LnCl₃(THF)_x с трифенилацетатом натрия, может приводить к образованию целой серии комплексов: моноядерных, биядерных и ate-комплексов. Образование того или иного структурного типа может контролироваться соотношением исходных реагентов и природой используемого растворителя. Вероятно, аналогичные процессы могут происходить в случае других карбоксилатных комплексов, в том числе версататов лантанидов.

3. Реакционная способность трифенилацетатных комплексов с алюминийорганическими соединениями

Для получения информации о строении интермедиатов трехкомпонентной каталитической системы [Ln(RCOO)₃/Al(i-Bu)₃/(Al₂Cl₃Et₃)], мы изучили процесс взаимодействия трифенилацетатов с алюминийорганическими соединениями.

Первой стадией формирования каталитической системы является взаимодействие карбоксилата неодима с алюминийорганическими соединениями. В промышленности, в качестве алкилирующего агента, обычно используют триизобутилалюминий. Реакция **11** и **12** с избытком (i-Bu)₃Al привела к образованию смеси продуктов, которую не удалось разделить. Мы предположили, что использование алюминийорганического соединения с меньшей длиной цепи алкильного заместителя, позволит выделить продукты реакции в кристаллическом виде и изучить их строение методом РСА.

Взаимодействие трифенилацетатного комплекса неодима **12** с триэтилалюминием в мольном соотношении (Nd : Al) 1 : 5 в толуоле приводит к $[Nd(Ph_3CCOO)_2]_2[Al(C_2H_5)_4]_2$ (**21**). Аналогичная реакция с использованием моноядерного биядерного аtе-комплекса **19** или олигомерного соединения **15** также приводит к образованию соединения **21** (схема 5).

По данным РСА комплекс **21** состоит из катионов неодима соединеных четырьмя мостиковыми μ_2 : $\kappa^1 - \kappa^1$ -Ph₃CCOO⁻, и двух [AlEt₄]⁻, каждый из которых координирован с

катионом неодима по η^3 типу (рис. 7).

Рисунок 7. Строение комплексов **21** и **22**. Атомы водорода и углерода фенильных групп не показаны.

Строение центрального фрагмента $[Nd((\mu_2: \kappa^1 - \kappa^1)Ph_3CCOO)_4Nd]$ **21** напоминает строение **17**, за исключением меньших расстояний Ln-O в **21** (средние значения расстояний Ln-O в соединениях **17** и **21** равны 2.388 Å и 2.338 Å соответственно (таблицы 4 и 6)). Это укорочение может быть результатом уменьшения координационных чисел катиона неодима с 9 в **17** на 7 в **21**.

	21 (Nd)	22 (La)
Ln–O (μ_2 - κ^1 : κ^1 Ph ₃ CCOO ⁻)	2.310(2)-2.379(2)	2.363(1)-2.419(1)
Ln–C (C_2H_5)	2.768(4)-3.044(3)	2.823(2)-3.044(2)
	1.972(4), 1.984(3)	1.971(2), 1.979(2)
Al–C (C_2H_5)	(некоординированный),	(некоординированный),
	2.023(3)-2.066(4)	2.027(2)-2.069(2)
	(координированный)	(координированный)

Таблица 6. Основные структурные параметры комплексов 21 и 22.

Среднее значения расстояний Ln-C(CH₂-) равно 2.89 Å. В тетраэтилалюминатном фрагменте комплекса **21** одна из связей Al-C короче на 0.05 - 0.1 Å, что говорит о разрыхлении

трех связей Al-C, вследствие взаимодействия трех этильных групп с катионом неодима (таблица 6).

Поскольку процесс полимеризации происходит в жидкой фазе, было интересно проверить, сохраняется ли координационное окружение Ln³⁺ в растворе. С этой целью был синтезирован диамагнитный лантановый аналог [La(Ph₃CCOO)₂]₂[Al(CH₃)₄)]₂ (22). По данным PCA **22** изоструктурен **21** (рис. 10). ¹Н ЯМР спектры **22**, зарегистрированные в растворе толуола, демонстрируют эквивалентность всех этильных групп в шкале времени ЯМР (рис 8(а)). Вероятно, это является результатом быстрого тетраэтилалюминатат-анионов. вращения Понижение температуры до -70°C вызывает уширение сигналов протонов этильных групп [AlEt₄]⁻ (рис. 8 (b, c)), что показывает неэквивалентность этильных заместителей в [AlEt₄]⁻ и позволяет предположить, что 21 и 22 сохраняют свое строение в растворе.

Рисунок 8 ¹Н ЯМР 22 в области сигналов протонов алкильных групп.

Второй стадией формирования каталитической системы является реакция с донором хлорид-ионов, обычно в качестве этого реагента используют алюминийсесквихлорид (Al₂Et₃Cl₃) или диэтилалюминийхлорид (AlEt₂Cl). Реакция соединения **12** с AlEt₃ с последующим взаимодействием с AlEt₂Cl приводит к образованию смеси продуктов. Все попытки выделить неодим-содержащее соединение оказались неудачными. Единственным продуктом, выделенным при кристаллизации из смеси толуол-гексан, оказался трифенилацетат диэтилалюминия (**23**), строение которого было установленно методом РСА. Соединение **23** построено в виде биядерного комплекса с почти плоским восьмичленным циклом (рис. 9), в котором катионы алюминия координированы двумя этильными группами и двумя атомами кислорода карбоксилатных анионов.

Рисунок 9. Строение **23.** Атомы водорода не показаны.

4. Каталитическая активность ди-, трифенилацетатов и гетеробиметаллических Ln-Al комплексов в стереоспецифической полимеризации диенов-1,3

Ди и трифенилацетатные комплексы могут выступать в качестве моделей версататов лантанидов, которые являются предшественниками высокоактивных промышленных каталитических систем полимеризации диенов-1,3. Для оценки адекватности выбранной модели был выполнен ряд тестов полимеризации бутадиена и изопрена с использованием полученных соединений в тройных каталитических системах: [Ln(RCOO)₃/AlR₃/Al₂Et₃Cl₃].

Преката- лизатор	Соката- лизатор	Время, ч.	Мономер	Al:Nd	Выход, %	1,4- цис %	1,4 транс %	1,2 %	$M(w) = 10^{-3}$	$\frac{M(n)}{10^{-3}}$	M(w)/M(n)
1	Al(i-Bu) ₃	3	Бутадиен	30	<10	-	-	-	_	-	-
2	Al(i-Bu) ₃	3	Бутадиен	30	89	99,1	0,8	0,1	1059	421	2,53
2	HAl(i-Bu) ₂	3	Бутадиен	15	95	98,9	0,8	0,3	580	96	6,05
2	Al(i-Bu) ₃	3	Изопрен	30	64	94.0	6.0	-	1307	621	2.10
4	Al(i-Bu) ₃	3	Бутадиен	30	38	95.0	0.5	-	-	-	-
11	Al(i-Bu) ₃	48	Бутадиен	30	24	95.5	3.5	1	-	-	-
12	Al(i-Bu) ₃	3	Бутадиен	30	74	98.4	1.2	0.2	395	98	4,03
12	HAl(i-Bu) ₂	3	Бутадиен	15	78	99.2	0.7	0.1	514	68	7.59
21	Al(i-Bu) ₃	6	Бутадиен	30	69	98.3	1.7		1460	254	5,76
21	$A\overline{l(i-Bu)}_{3}$	6	Изопрен	30	51.3	96	4		1786,2	252,3	7,08
22	Al(i-Bu) ₃	>10	Бутадиен	15	<5	-	_	-	_	-	-

Таблица. 7 Полимеризация бутадиена и изопрена⁴.

⁴ Тесты каталитической активности и определение микроструктуры полимеров (содержание 1,4- цис, 1,4- транс и 1,2- звеньев) и молекулярно-массового распределения проводились в лаб. № 8 Института Нефтехимического синтеза РАН. Условия полимеризации: гексан, [monomer] /[Nd] = 10000 (для **21** и **22** [monomer] /[Nd] = 5000), [Al₂Et₃Cl₃]/[Nd]=0.83,T = 50°C.

Дифенилацетат неодима 2 обладает каталитической активностью сравнимой с версататом неодима. Низкая активность соединения 4, по-видимому, обусловлена наличием координированных молекул метанола В комплексе, которые могут реагировать с алюминийорганическими соединениями и приводить к формированию олигомерных алкоксидных комплексов. Каталитические системы на основе трифенилацета неодима 12 и на основе версатата неодима, показывают сходную каталитическую активность и приводят к полимерам с близкими молекулярно-массовыми характеристиками и строением полимерной цепи. Это позволяет считать трифенилацетатные комплексы лантанидов адекватными моделями версататов. Алюминатные производные 21 и 22 могут выступать в качестве моделей интермедиатов, образующихся на первой стадии формирования катализатора, поэтому было интересно исследовать их каталитическую активность как с добавлением алкилирующего агента и донора хлора, так и без добавления. Каталитические системы [21/Al(i-Bu)₃] и [21/Al₂Et₃Cl₃] демонстрируют чрезвычайно низкую активность в полимеризации бутадиена, а система состоящая из трех компонентов [21/Al(i-Bu)₃/Al₂Et₃Cl₃] проявляет высокую активность (таблица 7). Это позволяет предположить, что высокоактивные частицы являются продуктами двойного замещения карбоксилатных лигандов и обязательно содержат ион хлора, что согласуется с литературными данными для других каталитических систем на основе неодима.⁵

Комплекс **21** проявляет несколько более низкую каталитическую активность в трехкомпонентной каталитической системе, чем его предшественник **12**. При этом получаемые полимеры обладают высокой стереорегулярностью (более 96% 1,4 – цис звеньев) и имеют более высокую молекулярную массу (таблица 7). Это позволяет предполагать, что, во-первых, процесс полимеризации бутадиена, катализируемый тройными каталитическими системами на основе карбоксилатов неодима, является многоканальной реакцией и, во-вторых, **21** ответственен за формирование полимера с высокой молекулярной массой ($M_w > 10^6$)

Несмотря на то что соединения лантана (1, 11, 22) и неодима (2, 12, 21) попарно изоструктурны, комплексы лантана проявляют принципиально более низкую каталитическую активность. Подобная закономерность наблюдается и для других соединений лантана известных из литературы⁶. По-видимому, это связано с тонкими различиями структуры комплексов La и Nd, которые не удается обнаружить обычными методами. Мы поставили задачу такого изменения лигандного окружения Ln^{3+} в карбоксилатных комплексах, которое позволило бы наблюдать структурные различия между однотипными комплексами La и Nd.

⁵ Kwag, G. Highly Reactive and Monomeric Neodymium Catalyst // *Macromolecules*, **2002**, Vol. 35, pp 4875-4879.

⁶ Fischbach A., Klimpel M.G., Widenmeyer M., Herdtweck E., Scherer W., Anwander R. // Angew. Chem. Int. Ed. 2004, Vol. 43, pp. 2234 – 2239

5. Взаимодействие трифенилацетатных комплексов с полигетеродентатными лигандами.

Предполагалось, что введение объемных циклических полигетеродентатных лигандов в трифенилацетатные комплексы **11** и **12** позволит наблюдать структурные различия между сходными комплексами La и Nd. В качестве таких лигандов мы выбрали 1,3,5-триметил-1,3,5-гексагидротриазин (Me₃HHT) и 18–краун-6.

Действительно, взаимодействие **11** и **12** в одинаковых условиях с Me_3HHT приводит к образованию разных продуктов: биядерного $[La_2(Ph_3CCOO)_3(Me_3HHT)](toluene)$ (**24**) и моноядерного $[Nd(Ph_3CCOO)_3(Me_3HHT)](CHCl_3)$ (**25**) соответственно (схема 6, рис. 10), причем использование больших избытков Me_3HHT (3 эквивалента) в реакции с **11** так же приводит к **24**.

Схема 6 Получение комплексов 24 и 25.

В комплексе **24** координационное число одного из катионов лантана равно 9 La(1), а другого 7 La(2). Два катиона лантанидов связаны двумя μ_2 - κ^1 : κ^1 -Ph₃CCOO⁻ и одним μ_2 . κ^2 : k^1 .Ph₃CCOO⁻ . La(1) дополнительно координирован одним κ^2 -Ph₃CCOO⁻ лигандом и одной молекулой Me₃HHT по κ^3 -типу, тогда как La(2) - двумя терминальными молекулами Ph₃CCOO по κ^2 -типу.

Рисунок 10. Строение комплексов a) 24 и b) 25. Атомы водорода и углерода фенильных групп не показаны.

В моноядерном комплексе **25** центральный атом координирован тремя Ph_3CCOO^{-1} лигандами по κ^2 -типу, одной молекулой Me_3HHT по κ^3 -типу и имеет координационное число 9. Расстояния Nd – O(карбоксилатный лиганд) сопоставимы с теми, что наблюдаются в моноядерном трифенилацетатном комплексе **12**.

	19 91	1 1	
	24 (La(1))	24 (La(2))	25 (Nd)
$ Ln-O (\kappa^2-Ph_2CHCOO) $	2.508(1) - 2.529(1)	2.462(1) - 2.549(1)	2.44(1) - 2.483(1)
$Ln-O$ (μ_2 - κ^1 : κ^2 -Ph ₂ CHCOO)	2.518(1), 2.768(13)	2.529(1)	-
$ Ln-O (\mu_2-\kappa^1:\kappa^1-Ph_2CHCOO) $	2.435(1) - 2.479(1)	2.378(1), 2.456(1)	-
Ln - N	2.743(2) - 2.758(2)	-	2.68(2) - 2.72(2)
Координационное число Ln ³⁺	9	7	9

Таблица 8. Основные структурные параметры 24 и 25.

Можно предположить, что для обоих лантанидов первоначально формируется моноядерный комплекс, который в случае лантана является неустойчивым. Ионный радиус La³⁺ больше чем ионный радиус Nd³⁺ и, по-видимому, координационная сфера катиона лантана при образовании моноядерного аддукта ненасыщена. Дальнейшее взаимодействие с одним молем трифенилацетата лантана приводит к образованию биядерного комплекса **24**.

Взаимодействие трифенилацетатных комплексов **11** и **12** в растворе толуола с 18-краун-6 приводит к образованию разных по структуре [La(Ph₃CCOO)₃(18-crown-6)] (**26**) и [Nd(Ph₃CCOO)₂(18-crown-6)]⁺[Nd(Ph₃CCOO)₄]⁻ (**27**) соответственно (схема 7). При действии одного моль 18-краун-6 на трифенилацетатные комплексы в случае лантана образуется комплекс в котором соотношение Ln^{3+} : (18-краун-6) = 1 : 1, а в случае неодима комплекс в котором соотношение Ln^{3+} : (18-краун-6) = 2 : 1. Использование избытка 18-краун-6 в реакции с трифенилацетатом неодима **12** (до 2.5 эквивалентов), также приводит к образованию **27**.

Схема 7 Получение комплексов 26 и 27.

23 построен в виде моноядерного комплекса в котором центральный катион лантана координирован тремя Ph_3CCOO^- по κ^2 -типу и 18-краун-6 по κ^6 -типу (рис. 11).

Координационное число лантана равно 12. Расстояние от La до одного из трифенилацетатных лигандов заметно больше чем до двух других, расстояния La – О (18-краун-6) находятся в широком диапазоне 2.598(6) - 2.870(6) (таблица 9). Очевидно, столь существенное различие в расстояниях Ln-O связано с отталкиванием карбоксилатных лигандов и 18-краун-6.

Рисунок 11 Строение комплексов I) 26 и II) 27 а) катионный фрагмент b) анионный фрагмент

	26 (La)	27a (Nd(1))	27b (Nd(2))
I n–O	2.609(5)-2.654(5)		
$(\kappa^2 - Ph_3CCOO)$	2.586(5) -2.611(5)	2.372(5), 2.445(5)	2.437(5) - 2.469(5)
	2.765(5), 2.788(6)		
Ln – О (18-краун-6)	2.598(6) - 2.870(6)	2.598(6) - 2.693(6)	
Координационное число Ln ³⁺	12	10	8

Таблица 9 Основные	структурные	параметры 26	й и 27 .
--------------------	-------------	--------------	-----------------

Стоит отметить, что образование **26** из **11** может происходить только в результате полного или частичного отрыва одного из трифенилацетатных лигандов. Подобной диссоциации карбоксилатного комплекса трудно было ожидать в растворе толуола, обладающего низким значением диэлектрической проницаемости (ε =2).

Соединение 27 представляет собой контактную ионную пару. Анион $[Nd(Ph_3CCOO)_4]^+$ построен в виде тетраэдра, в вершинах которого Ph_3CCOO^- лиганды, координированные по κ^2 -типу. В катионной части 27 десятикоординационный Nd(1) координирован двумя Ph_3CCOO^- по κ^2 типу и 18-краун-6 по κ^6 -типу. Расстояния Nd – O(карбоксилатный лиганд) сопоставимы с наблюдаемыми в 12.

Можно предположить, что для обоих лантанидов первоначально формируется моноядерный комплекс с двенадцатикоординационным лантанидом, для неодима подобное

лигандное окружение с КЧ 12 не характерно, поэтому он превращается в 27, существующий в виде контактной ионной пары, где координационные числа неодима равны 10 и 8.

Варьирование полигетеродентатных циклических органических лигандов позволило обнаружить структурные различия между **11** и **12**, которые являются предшественниками каталитически активных интермедиатов. Образующиеся промужуточные соединения в процессе формирования катализатора, по-видимому, тоже имеют небольшие структурные различия обусловленные разным ионным радиусом лантанидов. Мы предположили, что уменьшение длины алкильной цепи в алюминатном фрагменте **21** и **22** позволит выявить структурные различия между производными Nd и La.

6. Взаимодействие трифенилацетатов La и Nd с триметилалюминием.

Взаимодействие моноядерного **12** и аtе-комплекса **19** в растворе толуола с AlMe₃ приводит к образованию нерастворимого в толуоле [Nd(Ph₃CCOO)₂]₂[Al(CH₃)₄]₂ (**28**) (схема 8).

Схема 8 Схема получение 28 и 29

Исследование строения **28** методом PCA показало, что комплекс существует в виде двух структурных изомеров, присутствующих в независимой части элементарной ячейки кристаллов **28** (рис. 12). Изомеры различаются координацией мостиковых трифенилацетатных лигандов: в случае а) все четыре Ph₃CCOO лиганда эквивалентны и координированы с катионами лантана по μ_2 - κ^1 : κ^1 - типу, в случае b) два Ph₃CCOO лиганда координированы с катионами лантана по μ_2 - κ^1 : κ^1 - типу, а два другие - по μ^2 - κ^1 : κ^2 - типу.

Рисунок 12. Строение двух изомеров комплекса **28**. Атомы водорода и углерода фенильных групп не показаны.

	28a (Nd)	28b (Nd)	29 (La)
$ \begin{array}{c} \text{Ln-O} \\ (\mu_2 - \kappa^1: \kappa^1 - \\ \text{Ph}_3 \text{CCOO}^-) \end{array} $	2.26(1) - 2.35(1)	2.31(1)- 2.36(1)	2.40(1) - 2.42(1)
$ \begin{array}{c} \text{Ln-O} \\ (\mu_2 - \kappa^1 : \kappa^2 - \\ \text{Ph}_3 \text{CCOO}^-) \end{array} $		2.38(1)- 2.83(1)	2.50(1) - 2.57(1)
Ln–C (CH ₃)	2.72(2) - 3.03(3)	2.73(2)- 2.962(19)	2.85(1), 2.86(1)
Ln – C (Ph)			3.22 - 3.32
Al–C (CH ₃)	1.96(2), 1.99(2) (некоординированный), 2.06(2) – 2.11(3)	1.97(2) (некоординированный), 2.01(2) - 2.08(2)	1.98(2), 2.01(2) (некоординированный), 2.06(2), 2.07(2)
	(координированный)	(координированный)	(координированный)
Координационное число Ln ³⁺	7	8	10

Таблица 10. Основные структурные параметры 28(а, b), 29.

Реакции моноядерного 11 или ate- трифенилацетатного комплекса лантана 18 с триметилалюминием приводят к нерастворимому в толуоле $[La(Ph_3CCOO)_2]_2[Al(CH_3)_4)]_2$ (29), строение которого было установлено методом PCA. Соединение 29 имеет принципиально иное координационное окружение катионов лантанида, чем 28а и 28b (рис. 13). Так, $[AlMe_4]^-$ анион координирован по η^2 - типу, с двумя мостиковыми метильными группами, а не по η^3 - типу, как в 28а и 28b. Однако, более интересно то, что в 29 наблюдается η^6 - координация каждого из катионов лантана с одним из фенильных колец полумостиковых (μ^2 - κ^1 : κ^2) трифенилацетатных групп. Расстояния La – С_{Phenyl} лежат в интервале 3.22 – 3.32 Å, (La-Ph_{centroid} = 2.90 Å), что с

учетом различий в величинах ионных радиусов, лишь незначительно превышает расстояния Sm-C в известном ареновом комплексе $[Sm(\eta^6-C_6Me_6)(AlCl_4)_3]^7$

Рисунок 13. Строение комплекса **29**. Атомы водорода и атомы углерода фенильных групп не координированых с катионом La³⁺ не показаны.

Таким образом, комплекс **29** следует рассматривать одновременно как алкильный, ареновый и карбоксилатный комплекс РЗЭ и является первым примером карбоксилатных комплексов такого типа. Очевидно, что переход от η^3 - к η^2 - координации тетраметилалюминат аниона усиливает координационную ненасыщенность La³⁺, способствуя его координации с π -системой одного из фенильных колец трифенилацетатного лиганда.

Очевидно, что различие каталитической активности комплексов лантана, по сравнению с неодимовыми комплексами, связано с различием в строении La-Al и Nd-Al интермедиатов, которое удалось обнаружить в случае **28** и **29**. В комплексе лантана наблюдается дополнительная π – координация с одним из фенильных колец полумостикового трифенилацетатного лиганда. В каталитических системах на основе версатата, которые используются в промышленности, в качестве доноров π -электронов могут выступать мономеры (бутадиен, изопрен). Основные предположения о механизме полимеризации диенов-1,3 касаются формирования π -комплекса с мономером, который предшествует процессу полимеризации⁵. Факт образования π комплекса **29** (с π -ареновой системой), позволяет предположить, что La³⁺ образует более стабильный, по сравнению с Nd³⁺, π -комплекс с диеном, что и обусловливает низкую каталитическую активность соединений лантана.

⁷ Cotton F. A., Schwotzer W. // J. Amer. Chem. Soc., **1986**, Vol. 108, pp. 4657-4658.

выводы

- Впервые получены и охарактеризованы основными физико-химическими методами, включая рентгеноструктурный анализ, ди- и трифенилацетатные комплексы лантанидов, разработан препаративный метод их синтеза.
- На основании результатов прецизионного рентгеноструктурного исследования [Nd₂(Ph₂CHCOO)₆(THF)₄] (2) получены данные об энергиях связей Nd - органический лиганд.
- 3. Взаимодействие хлоридов La и Nd с Ph₃CCOONa может приводить к образованию пяти различных структурных типов трифенилацетатных комплексов: двух типов моноядерных ([Ln(κ^1 -Ph_3CCOO)(κ^2 -Ph_3CCOO)₂(MeOH)₄)], [Ln(κ^2 -Ph_3CCOO)₃(THF)₃]), биядерного [(THF)₄Ln₂(κ^2 -Ph_3CCOO)₂(μ_2 κ^1 : κ^1 -Ph_3CCOO)₄] и двух типов ate-комплексов ([(THF)₂(κ^2 -Ph_3CCOO)Ln(μ_2 κ^1 : κ^2 -Ph_3CCOO)₂(μ_2 κ^1 : κ^1 -Ph_3CCOO)Na(Ph_3CCOO)(THF)] ([(DME)(κ^2 -Ph_3CCOO)La(μ_2 κ^1 : κ^2 -Ph_3CCOO)₂(μ_2 κ^1 : κ^1 -Ph_3CCOO)Na(DME)]
- Введение полигетеродентатных циклических органических лигандов в координационную сферу однотипных комплексов La и Nd приводит к образованию аддуктов разного строения с различным соотношением Ln-(циклический лиганд), что демонстрирует структурные различия между родственными комплексами La и Nd.
- 5. Впервые получены и охарактеризованы тетраядерные лантанид-алюминиевые комплексы [Ln(Ph₃CCOO)₂]₂[AlR₄]₂ (Ln = La, Nd; R=CH₃-, C₂H₅-). Обнаружено образование трех структурных типов тетраметилалюминатных комплексов. Установлено образование аренового комплекса катиона лантана с π- системой фенильного кольца трифенилацетатного лиганда в [(η²-AlMe₄)La(μ₂-κ¹:κ²-(η⁶-Ph)Ph₂CCOO)₂(μ₂-κ¹:κ¹-Ph₃CCOO)₂La(η²-AlMe₄)].
- 6. Показано, что процесс полимеризации диенов-1,3 является многоканальной реакцией, [Nd(Ph₃CCOO)₂]₂[AlR₄]₂ является одной из каталитически активных форм и ответственен за формирование полимера с высокой молекулярной массой (M_w>10⁶).
- Показано, что исследованные комплексы неодима могут служить адекватными модельными объектами для промышленных каталитических процессов стереоспецифической полимеризации диенов-1,3.

Основные результаты диссертации изложены в следующих публикациях:

- Roitershtein D.M., Vinogradov Alexander A., Vinogradov Alexei A., Lyssenko K.A., Nelyubina Y.V., Anan'ev I.V., Nifant'ev I.E., Yakovlev V.A., Kostitsyna N.N. Di- and Triphenylacetates of Lanthanum and Neodymium. Synthesis, Structural Diversity, and Application in Diene Polymerization // Organometallics, 2013, Vol. 32, pp. 1272–1286.
- Виноградов Александр А., Виноградов Алексей А., Лысенко К.А., Нелюбина Ю.В., Прокопенко О.Р., Антипин М.Ю., Ройтерштейн Д.М. Новый взгляд на карбоксилаты лантанидов. Ди- и трифенилацетатаы Y, La и Nd. Пути синтеза и неожиданная ассоциация при гидролизе. // Тезисы докладов XVIII Менделевского съезда по общей и прикладной химии, Москва 2007 том 1, стр. 152
- Roitershtein D.M., Vinogradov Alexander A., Vinogradov Alexey A., Lyssenko K.A., Neliubina Y.V., Antipin M.Yu. A New Insight into Water-Free Rare-Earth Carboxylates. An Efficient Route to and Structure and Properties thereof // Abstracts of XXI Tage der Seltenen Erden Terrae Rarae, Ruhr-Universitat Bochum, Germany, 2008 p38.
- Виноградов Александр А. Ди- и трифенилацетатные комплексы лантанидов. Синтез, строение и свойства». // Тезисы международного молодежного научного форума «ЛОМОНОСОВ-2010» [Электронный ресурс] — М.: МАКС Пресс, 2010 (устный доклад).
- 5. Виноградов Александр А., Виноградов Алексей А., Лысенко К.А., Нелюбина Ю.В., Ройтерштейн Д.М. Ди- и трифенилацетатные комплексы лантанидов и иттрия. Синтез, строение, свойства и реакционная способность с алюминийорганическими соединениями // Тезисы докладов IV молодежной конференции ИОХ РАН, Москва, 11-12 ноября, 2010 г., стр. 92-93.
- Roitershtein D.M., Vinogradov Alexander A., Vinogradov Alexey A., Lyssenko K.A., Neliubina Y.V., Nifant'ev I.E. Lanthanide di- and triphenylacetates, structure, reactivity and catalytic activity // Abstracts of XXIII. TdSE Terrae Rarae, Bayreuth, Germany, 2010, ES 14.
- Roitershtein D.M., Vinogradov Alexander A., Lyssenko K.A., Nifant'ev I.E., Tavtorkin A.N. Lanthanide complexes with aryl substituted carboxylate and phosphate ligands, structural diversity and application in diene polymerization // Abstracts of XXIV. TdSE Terrae Rarae, Karlsruher Institut fur Technologie, Germany, 2011, O 23.
- Виноградов Александр А., Виноградов Алексей А., Ройтерштейн Д.М., Лысенко К. А., Нелюбина Ю.В., Нифантьев И.Э. Синтез, строение, свойства ди- и трифенилацетатных комплексов редкоземельных элементов. Применение неодимовых комплексов в стереоспецифической полимеризации сопряженных диенов // Тезисы V Молодежной конференция ИОХ РАН, Москва, 28–29 марта, 2012 г, О12 (устный доклад).